Quadratic Equations in One Variable Exercise 5.1

PrevNextBack

Quadratic Equations in One Variable Exercise 5.1

Exercise 5.1

Question 1

In each of the following, determine whether the given numbers are roots of the given equations or not:

(i) x25x+6=0;2,3x^2 - 5x + 6 = 0; 2, -3

(ii) 3x213x10=0;5,233x^2 - 13x - 10 = 0 ; 5, -\dfrac{2}{3}

Answer

(i) Given,

x25x+6=0x^2 - 5x + 6 = 0

Substituting x = 2 in the LHS of the given equation, we get:

LHS=225×2+6=410+6=1010=0=RHS\text{LHS} = 2^2 - 5 \times 2 + 6 \\[0.5em] = 4 - 10 + 6 \\[0.5em] = 10 - 10 \\[0.5em] = 0 \\[0.5em] = \text{RHS}

∴ 2 is a root of the given equation.

Substituting x = -3 in the LHS of the given equation, we get:

LHS=(3)25×(3)+6=9+15+6=30\text{LHS} = (-3)^2 - 5 \times (-3) + 6 \\[0.5em] = 9 + 15 + 6 \\[0.5em] = 30

RHS\text{RHS}

∴ 3 is not a root of the given equation.

Hence, 2 is a root but -3 is not a root of the given equation.

(ii) Given,

3x213x10=03x^2 - 13x - 10 = 0

Substituting x = 5 in the LHS of the given equation, we get:

LHS=3×(5)213×510=3×256510=7575=0=RHS\text{LHS} = 3 \times (5)^2 - 13 \times 5 - 10 \\[0.5em] = 3 \times 25 - 65 -10 \\[0.5em] = 75 - 75 \\[0.5em] = 0 \\[0.5em] = \text{RHS}

∴ 5 is a root of the equation

Substituting x = 23-\dfrac{2}{3} in the LHS of the given equation, we get:

LHS=3×(23)213×(23)10=3×49+26310=43+26310=30310=1010=0=RHS\text{LHS} = 3 \times \Big(-\dfrac{2}{3}\Big)^2 - 13 \times \Big( -\dfrac{2}{3} \Big) - 10 \\[0.5em] = 3 \times \dfrac{4}{9} + \dfrac{26}{3} - 10 \\[0.5em] = \dfrac{4}{3} + \dfrac{26}{3} - 10 \\[0.5em] = \dfrac{30}{3} - 10 \\[0.5em] = 10 - 10 \\[0.5em] = 0 \\[0.5em] = \text{RHS}

23-\dfrac{2}{3} is a root of the equation

Hence, both 5 and 23-\dfrac{2}{3} are roots of the given equation.

Question 2

In each of the following, determine whether the given numbers are solutions of the given equations or not:

(i) x233x+6=0;3, 23x^2 - 3\sqrt{3}x + 6 = 0; \sqrt{3}, \space -2\sqrt{3}

(ii) x22x4=0;2, 22x^2 - \sqrt{2}x - 4 = 0; -\sqrt{2}, \space 2\sqrt{2}

Answer

(i) Given,

x233x+6=0x^2 - 3\sqrt{3}x + 6 = 0

Substituting x = 3\sqrt{3} in the LHS of the given equation, we get:

LHS=(3)233×3+6=39+6=99=0=RHS\text{LHS} = (\sqrt{3})^2 - 3\sqrt{3} \times \sqrt{3} + 6 \\[0.5em] = 3 - 9 + 6 \\[0.5em] = 9 - 9 \\[0.5em] = 0 \\[0.5em] = \text{RHS}

3\sqrt{3} is a solution of the given equation

Substituting x = 23-2\sqrt{3} in the LHS of the given equation, we get:

LHS=(23)233×23+6=12+18+6=36RHS\text{LHS} = (-2\sqrt{3})^2 - 3\sqrt{3} \times -2\sqrt{3} + 6 \\[0.5em] = 12 + 18 + 6 \\[0.5em] = 36 \\[0.5em] \neq \text{RHS}

23-2\sqrt{3} is not a solution of the given equation

Hence, 3\sqrt{3} is a solution of the given equation but 23-2\sqrt{3} is not.

(ii) Given,

x22x4=0x^2 - \sqrt{2}x - 4 = 0

Substituting x = 2-\sqrt{2} in the LHS of the given equation, we get:

LHS=(2)22×(2)4=2+24=0=RHS\text{LHS} = (-\sqrt{2})^2 - \sqrt{2} \times (-\sqrt{2}) - 4 \\[0.5em] = 2 + 2 - 4 \\[0.5em] = 0 \\[0.5em] = \text{RHS}

2-\sqrt{2} is a solution of the given equation

Substituting x = 222\sqrt{2} in the LHS of the given equation, we get:

LHS=(22)22×224=844=88=0=RHS\text{LHS} = (2\sqrt{2})^2 - \sqrt{2} \times 2\sqrt{2} - 4 \\[0.5em] = 8 - 4 - 4 \\[0.5em] = 8 - 8 \\[0.5em] = 0 \\[0.5em] = \text{RHS}

222\sqrt{2} is a solution of the given equation

Hence, 2-\sqrt{2} and 222\sqrt{2} both are solutions of the given equation.

Question 3(i)

If 12-\dfrac{1}{2} is the solution of the equation 3x2 + 2kx - 3 = 0, find the value of k.

Answer

Since, 12-\dfrac{1}{2} is a solution of the equation 3x2 + 2kx - 3 = 0, x = 12-\dfrac{1}{2} satisfies the given equation.

Substituting x = 12-\dfrac{1}{2} and solving for k we get:

3(12)2+2k(12)3=03×14k3=0k=334k=343k=3124k=943\Big(-\dfrac{1}{2}\Big)^2 + 2k \Big(-\dfrac{1}{2}\Big) -3 = 0 \\[0.5em] \Rightarrow 3 \times \dfrac{1}{4} - k - 3 = 0 \\[0.5em] \Rightarrow -k = 3 - \dfrac{3}{4} \\[0.5em] \Rightarrow k = \dfrac{3}{4} - 3 \\[0.5em] \Rightarrow k = \dfrac{3 - 12}{4} \\[0.5em] \Rightarrow k = -\dfrac{9}{4}

Hence, the value of k is 94-\dfrac{9}{4}

Question 3(ii)

If 23\dfrac{2}{3} is the solution of the equation 7x2 + kx - 3 = 0, find the value of k.

Answer

Since, 23\dfrac{2}{3} is the solution of the equation 7x2 + kx - 3 = 0, x = 23\dfrac{2}{3} satisfies the given equation.

Substituting x = 23-\dfrac{2}{3} and solving for k we get:

7(23)2+k×233=07×49+2k33=02893+2k3=0289279+6k9=0 (Taking L.C.M.) 2827+6k9=01+6k=06k=1k=16\Rightarrow 7\Big(\dfrac{2}{3}\Big)^2 + k \times \dfrac{2}{3} -3 = 0 \\[0.5em] \Rightarrow 7 \times \dfrac{4}{9} + \dfrac{2k}{3} -3 = 0 \\[0.5em] \Rightarrow \dfrac{28}{9} - 3 + \dfrac{2k}{3} = 0 \\[0.5em] \Rightarrow \dfrac{28}{9} - \dfrac{27}{9} + \dfrac{6k}{9} = 0 \text{ (Taking L.C.M.) } \\[0.5em] \Rightarrow \dfrac{28 - 27 + 6k}{9} = 0 \\[0.5em] \Rightarrow 1 + 6k = 0 \\[0.5em] \Rightarrow 6k = -1 \\[0.5em] \Rightarrow k = -\dfrac{1}{6}

Hence, the value of k is 16.-\dfrac{1}{6}.

Question 4(i)

If 2\sqrt{2} is a root of the equation kx2+2x4=0kx^2 + \sqrt{2}x - 4 = 0, find the value of k.

Answer

Since 2\sqrt{2} is a root of the equation kx2+2x4=0kx^2 + \sqrt{2}x - 4 = 0, x=2x = \sqrt{2} satisfies the given equation.

Substituting x=2x = \sqrt{2} in the given equation:

k(2)2+2×24=02k+24=02k2=02k=2k=1k ( \sqrt{2} )^2 + \sqrt{2} \times \sqrt{2} - 4 = 0 \\[0.5em] \Rightarrow 2k + 2 - 4 = 0 \\[0.5em] \Rightarrow 2k - 2 = 0 \\[0.5em] \Rightarrow 2k = 2 \\[0.5em] \Rightarrow k = 1

Hence, the value of k is 1

Question 4(ii)

If a is the root of the equation x2 - (a + b)x + k = 0, find the value of k.

Answer

Since, a is the root of the equation x2 - (a + b)x + k = 0 , x = a satisfies the given equation.

Substituting x = a in the given equation:

a2(a+b)a+k=0a2(a2+ab)+k=0a2a2ab+k=0kab=0k=ab\Rightarrow a^2 - (a+b)a + k = 0 \\[0.5em] \Rightarrow a^2 - (a^2 + ab) + k = 0 \\[0.5em] \Rightarrow a^2 - a^2 - ab + k = 0 \\[0.5em] \Rightarrow k - ab = 0 \\[0.5em] \Rightarrow k = ab

Hence, the value of k is ab.

Question 5

If 23\dfrac{2}{3} and -3 are roots of the equation px2 + 7x + q = 0, find the values of p and q .

Answer

The given equation is px2 + 7x + q = 0.

As 23\dfrac{2}{3} is a root of the equation, so x = 23\dfrac{2}{3} satisfies the given equation.

Substituting x = 23\dfrac{2}{3} in the given equation:

p(23)2+7×23+q=04p9+143+q=0q=4p9143q=(4p+429) ...(i)p\big(\dfrac{2}{3} \big)^2 + 7 \times \dfrac{2}{3} + q = 0 \\[0.5em] \Rightarrow \dfrac{4p}{9} + \dfrac{14}{3} + q = 0 \\[0.5em] \Rightarrow q = -\dfrac{4p}{9} - \dfrac{14}{3} \\[0.5em] \Rightarrow q = -\big(\dfrac{4p + 42}{9}\big) \space \text{...(i)} \\[0.5em]

Also -3 is a root of the given equation, so x = -3 satisfies the given equation.

Substituting x = -3 in the given equation:

p(3)2+7×(3)+q=09p21+q=0 ...(ii)p(-3)^2 + 7 \times (-3) + q = 0 \\[0.5em] \Rightarrow 9p - 21 + q = 0 \space \text{...(ii)}

Putting value of q from eqn (i) into eqn (ii)

9p21(4p+429)=09p - 21 - \Big(\dfrac{4p + 42}{9}\Big) = 0

Taking 9 as the LCM

81p1894p429=077p231=077p=231p=23177p=3\Rightarrow \dfrac{81p - 189 - 4p - 42}{9} = 0 \\[0.5em] \Rightarrow 77p - 231 = 0 \\[0.5em] \Rightarrow 77p = 231 \\[0.5em] \Rightarrow p = \dfrac{231}{77} \\[0.5em] \Rightarrow p = 3

Substituting p = 3 in (i), we get

q=(4×3+429)q=(12+429)q=(549)q=6q = -\Big( \dfrac{4\times 3 + 42}{9} \Big) \\[0.5em] \Rightarrow q= -\Big(\dfrac{12 + 42}{9}\Big) \\[0.5em] \Rightarrow q= -\Big(\dfrac{54}{9}\Big) \\[0.5em] \Rightarrow q= -6

Hence, p = 3 and q = -6