Rational and Irrational Numbers

PrevNextBack

Rational and Irrational Numbers

Exercise 1.1

Question 1

Insert a rational number between 29\dfrac{2}{9} and 38\dfrac{3}{8} arrange in descending order.

Answer

The L.C.M of 9 and 8 is 72.

29=2×89×8=167238=3×98×9=2772Since 16<27,29<38\dfrac{2}{9} = \dfrac{2 \times 8}{9 \times 8} = \dfrac{16}{72} \\[0.5em] \dfrac{3}{8} = \dfrac{3 \times 9}{8 \times 9} = \dfrac{27}{72} \\[0.5em] \text{Since } 16 \lt 27, \dfrac{2}{9} \lt \dfrac{3}{8}

A rational number between 29\dfrac{2}{9} and 38\dfrac{3}{8}

=29+382=16+27722=43144= \dfrac{\dfrac{2}{9} + \dfrac{3}{8}}{2} \\[0.5em] = \dfrac{\dfrac{16 + 27}{72}}{2} \\[0.5em] = \bold{\dfrac{43}{144}} \\[0.5em]

Numbers in descending order are:

38,43144,29\bold{\dfrac{3}{8}}, \bold{\dfrac{43}{144}}, \bold{\dfrac{2}{9}}

Question 2

Insert two rational numbers between 13\dfrac{1}{3} and 14\dfrac{1}{4} and arrange in ascending order.

Answer

The L.C.M of 3 and 4 is 12.

13=1×43×4=41214=1×34×3=312Since 3<4,14<13\dfrac{1}{3} = \dfrac{1 \times 4}{3 \times 4} = \dfrac{4}{12} \\[0.5em] \dfrac{1}{4} = \dfrac{1 \times 3}{4 \times 3} = \dfrac{3}{12} \\[0.5em] \text{Since } 3 \lt 4, \dfrac{1}{4} \lt \dfrac{1}{3}

A rational number between 14\dfrac{1}{4} and 13\dfrac{1}{3}

=14+132=4+3122=724= \dfrac{\dfrac{1}{4} + \dfrac{1}{3}}{2} \\[0.5em] = \dfrac{\dfrac{4 + 3}{12}}{2} \\[0.5em] = \bold{\dfrac{7}{24}} \\[0.5em]

A rational number between 14\dfrac{1}{4} and 724\dfrac{7}{24}

=14+7242=6+7242=1348= \dfrac{\dfrac{1}{4} + \dfrac{7}{24}}{2} \\[0.5em] = \dfrac{\dfrac{6 + 7}{24}}{2} \\[0.5em] = \bold{\dfrac{13}{48}} \\[0.5em]

Numbers in ascending order are:

14,1348,724,13\bold{\dfrac{1}{4}}, \bold{\dfrac{13}{48}}, \bold{\dfrac{7}{24}}, \bold{\dfrac{1}{3}}

Question 3

Insert two rational numbers between 13-\dfrac{1}{3} and 12-\dfrac{1}{2} and arrange in ascending order.

Answer

The L.C.M of 2 and 3 is 6.

13=1×23×2=2612=1×32×3=36Since 3<2,12<13-\dfrac{1}{3} = -\dfrac{1 \times 2}{3 \times 2} = -\dfrac{2}{6} \\[0.5em] -\dfrac{1}{2} = -\dfrac{1 \times 3}{2 \times 3} = -\dfrac{3}{6} \\[0.5em] \text{Since } -3 \lt -2, -\dfrac{1}{2} \lt -\dfrac{1}{3}

A rational number between -12\dfrac{1}{2} and -13\dfrac{1}{3}

=12+(13)2=3+(2)62=3262=512= \dfrac{-\dfrac{1}{2} + \Big(-\dfrac{1}{3}\Big)}{2} \\[0.5em] = \dfrac{\dfrac{-3 + (-2)}{6}}{2} \\[0.5em] = \dfrac{\dfrac{-3 -2}{6}}{2} \\[0.5em] = \bold{-\dfrac{5}{12}} \\[0.5em]

A rational number between -12\dfrac{1}{2} and -512\dfrac{5}{12}

=12+(512)2=6+(5)122=65122=1124= \dfrac{-\dfrac{1}{2} + \Big(-\dfrac{5}{12}\Big)}{2} \\[0.5em] = \dfrac{\dfrac{-6 + (-5)}{12}}{2} \\[0.5em] = \dfrac{\dfrac{-6 -5}{12}}{2} \\[0.5em] = \bold{-\dfrac{11}{24}} \\[0.5em]

Numbers in ascending order are:

12,1124,512,13\bold{-\dfrac{1}{2}}, \bold{-\dfrac{11}{24}}, \bold{-\dfrac{5}{12}}, \bold{-\dfrac{1}{3}}

Question 4

Insert three rational numbers between 13\dfrac{1}{3} and 45\dfrac{4}{5}, and arrange in descending order.

Answer

The L.C.M of 3 and 5 is 15.

13=1×53×5=51545=4×35×3=1215Since 5<12,13<45\dfrac{1}{3} = \dfrac{1 \times 5}{3 \times 5} = \dfrac{5}{15} \\[0.5em] \dfrac{4}{5} = \dfrac{4 \times 3}{5 \times 3} = \dfrac{12}{15} \\[0.5em] \text{Since } 5 \lt 12, \dfrac{1}{3} \lt \dfrac{4}{5}

A rational number between 13\dfrac{1}{3} and 45\dfrac{4}{5}

=13+452=5+12152=1730= \dfrac{\dfrac{1}{3} + \dfrac{4}{5}}{2} \\[0.5em] = \dfrac{\dfrac{5 + 12}{15}}{2} \\[0.5em] = \bold{\dfrac{17}{30}} \\[0.5em]

A rational number between 13\dfrac{1}{3} and 1730\dfrac{17}{30}

=13+17302=10+17302=2760= \dfrac{\dfrac{1}{3} + \dfrac{17}{30}}{2} \\[0.5em] = \dfrac{\dfrac{10 + 17}{30}}{2} \\[0.5em] = \bold{\dfrac{27}{60}} \\[0.5em]

A rational number between 1730\dfrac{17}{30} and 45\dfrac{4}{5}

=1730+452=17+24302=4160= \dfrac{\dfrac{17}{30} + \dfrac{4}{5}}{2} \\[0.5em] = \dfrac{\dfrac{17 + 24}{30}}{2} \\[0.5em] = \bold{\dfrac{41}{60}} \\[0.5em]

Numbers in descending order are:

45,4160,1730,2760,13\bold{\dfrac{4}{5}}, \bold{\dfrac{41}{60}}, \bold{\dfrac{17}{30}}, \bold{\dfrac{27}{60}}, \bold{\dfrac{1}{3}}

Question 5

Insert three rational numbers between 4 and 4.5.

Answer

A rational number between 4 and 4.5

=4+4.52=8.52=4.25= \dfrac{4 + 4.5}{2} \\[0.5em] = \dfrac{8.5}{2} \\[0.5em] = \bold{4.25} \\[0.5em]

A rational number between 4 and 4.25

=4+4.252=8.252=4.125= \dfrac{4 + 4.25}{2} \\[0.5em] = \dfrac{8.25}{2} \\[0.5em] = \bold{4.125} \\[0.5em]

A rational number between 4 and 4.125

=4+4.1252=8.1252=4.0625= \dfrac{4 + 4.125}{2} \\[0.5em] = \dfrac{8.125}{2} \\[0.5em] = \bold{4.0625} \\[0.5em]

As, 4 < 4.0625 < 4.125 < 4.25 < 4.5, therefore three rational numbers between 4 and 4.5 are 4.0625, 4.125, 4.25.

Question 6

Find six rational numbers between 3 and 4.

Answer

The numbers 3 and 4 can be written as 31\dfrac{3}{1} and 41\dfrac{4}{1}.

Since we want to find six rational numbers between the given numbers, multiplying the numerator and denominator of the above numbers by 6 + 1 i.e. by 7, we get 217\dfrac{21}{7} and 287\dfrac{28}{7}, which are equivalent to the given numbers.

As 21<22<23<24<25<26<27<28,217<227<237<247<257<267<277<287\text{As } 21 \lt 22 \lt 23 \lt 24 \lt 25 \lt 26 \lt 27 \lt 28, \\[0.7em] \dfrac{21}{7} \lt \dfrac{22}{7} \lt \dfrac{23}{7} \lt \dfrac{24}{7} \lt \dfrac{25}{7} \lt \dfrac{26}{7} \lt \dfrac{27}{7} \lt \dfrac{28}{7}

Therefore, six rational numbers between 3 and 4 are:

227,237,247,257,267,277\bold{\dfrac{22}{7}}, \bold{\dfrac{23}{7}}, \bold{\dfrac{24}{7}}, \bold{\dfrac{25}{7}}, \bold{\dfrac{26}{7}}, \bold{\dfrac{27}{7}}

Question 7

Find five rational numbers between 35\dfrac{3}{5} and 45\dfrac{4}{5}.

Answer

Since we want to find five rational numbers between the given numbers, multiplying the numerator and denominator of the above numbers by 5 + 1 i.e. by 6, we get 1830\dfrac{18}{30} and 2430\dfrac{24}{30}, which are equivalent to the given numbers.

As 18<19<20<21<22<23<24,1830<1930<2030<2130<2230<2330<243035<1930<23<710<1115<2330<45\text{As } 18 \lt 19 \lt 20 \lt 21 \lt 22 \lt 23 \lt 24, \\[0.7em] \dfrac{18}{30} \lt \dfrac{19}{30} \lt \dfrac{20}{30} \lt \dfrac{21}{30} \lt \dfrac{22}{30} \lt \dfrac{23}{30} \lt \dfrac{24}{30} \\[0.7em] \Rightarrow \dfrac{3}{5} \lt \dfrac{19}{30} \lt \dfrac{2}{3} \lt \dfrac{7}{10} \lt \dfrac{11}{15} \lt \dfrac{23}{30} \lt \dfrac{4}{5}

Therefore, six rational numbers between 35\dfrac{3}{5} and 45\dfrac{4}{5} are:

1930,23,710,1115,2330\bold{\dfrac{19}{30}}, \bold{\dfrac{2}{3}}, \bold{\dfrac{7}{10}}, \bold{\dfrac{11}{15}}, \bold{\dfrac{23}{30}}

Question 8

Find ten rational numbers between 25-\dfrac{2}{5} and 17\dfrac{1}{7}.

Answer

Writing the given numbers with same denominator 35 (L.C.M. of 5 and 7), we get:

25=143517=535-\dfrac{2}{5} = -\dfrac{14}{35} \\[0.5em] \dfrac{1}{7} = \dfrac{5}{35}

As 14<13<12<11<10<9<8<7<0<1<2<5,1435<1335<1235<1135<1035<935<835<735<0<135<235<53525<1335<1235<1135<27<935<835<15<0<135<235<535\text{As } -14 \lt -13 \lt -12 \lt -11 \lt -10 \lt -9 \lt -8 \lt -7 \lt 0 \lt 1 \lt 2 \lt 5, \\[0.7em] -\dfrac{14}{35} \lt -\dfrac{13}{35} \lt -\dfrac{12}{35} \lt -\dfrac{11}{35} \lt -\dfrac{10}{35} \lt -\dfrac{9}{35} \lt -\dfrac{8}{35} \lt -\dfrac{7}{35} \lt 0 \lt \dfrac{1}{35} \lt \dfrac{2}{35} \lt \dfrac{5}{35} \\[0.7em] \Rightarrow -\dfrac{2}{5} \lt -\dfrac{13}{35} \lt -\dfrac{12}{35} \lt -\dfrac{11}{35} \lt -\dfrac{2}{7} \lt -\dfrac{9}{35} \lt -\dfrac{8}{35} \lt -\dfrac{1}{5} \lt 0 \lt \dfrac{1}{35} \lt \dfrac{2}{35} \lt \dfrac{5}{35}

Therefore, ten rational numbers between 25-\dfrac{2}{5} and 17\dfrac{1}{7} are:

1335,1235,1135,27,935,835,15,0,135,235\bold{-\dfrac{13}{35}}, \bold{-\dfrac{12}{35}}, \bold{-\dfrac{11}{35}}, \bold{-\dfrac{2}{7}}, \bold{-\dfrac{9}{35}}, \\[0.5em] \bold{-\dfrac{8}{35}}, \bold{-\dfrac{1}{5}}, 0, \bold{\dfrac{1}{35}}, \bold{\dfrac{2}{35}}

Question 9

Find six rational numbers between 12\dfrac{1}{2} and 23\dfrac{2}{3}.

Answer

Writing the given numbers with same denominator 6 (L.C.M. of 2 and 3), we get:

12=3623=46\dfrac{1}{2} = \dfrac{3}{6} \\[0.5em] \dfrac{2}{3} = \dfrac{4}{6}

Since we want to find six rational numbers between the given numbers, multiplying the numerator and denominator of the above numbers by 6 + 1 i.e. by 7, we get 2142\dfrac{21}{42} and 2842\dfrac{28}{42}, which are equivalent to the given numbers.

As 21<22<23<24<25<26<27<28,2142<2242<2342<2442<2542<2642<2742<284212<1121<2342<47<2542<1321<914<23\text{As } 21 \lt 22 \lt 23 \lt 24 \lt 25 \lt 26 \lt 27 \lt 28, \\[0.7em] \dfrac{21}{42} \lt \dfrac{22}{42} \lt \dfrac{23}{42} \lt \dfrac{24}{42} \lt \dfrac{25}{42} \lt \dfrac{26}{42} \lt \dfrac{27}{42} \lt \dfrac{28}{42} \\[0.7em] \Rightarrow \dfrac{1}{2} \lt \dfrac{11}{21} \lt \dfrac{23}{42} \lt \dfrac{4}{7} \lt \dfrac{25}{42} \lt \dfrac{13}{21} \lt \dfrac{9}{14} \lt \dfrac{2}{3}

Therefore, six rational numbers between 12\dfrac{1}{2} and 23\dfrac{2}{3} are:

1121,2342,47,2542,1321,914\bold{\dfrac{11}{21}}, \bold{\dfrac{23}{42}}, \bold{\dfrac{4}{7}}, \bold{\dfrac{25}{42}}, \bold{\dfrac{13}{21}}, \bold{\dfrac{9}{14}}

Exercise 1.2

Question 1

Prove that 5\sqrt{5} is an irrational number.

Answer

Let 5\sqrt{5} be a rational number, then

5=pq,\sqrt{5} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

5=p2q2p2=5q2....(i)\Rightarrow 5 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 5q^2 \qquad \text{....(i)}

As 5 divides 5q2, so 5 divides p2 but 5 is prime

5 divides p(Theorem 1)\Rightarrow 5 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 5m, where m is an integer.

Substituting this value of p in (i), we get

(5m)2=5q225m2=5q25m2=q2(5m)^2 = 5q^2 \\[0.5em] \Rightarrow 25m^2 = 5q^2 \\[0.5em] \Rightarrow 5m^2 = q^2 \\[0.5em]

As 5 divides 5m2, so 5 divides q2 but 5 is prime

5 divides q(Theorem 1)\Rightarrow 5 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 5. This contradicts that p and q have no common factors (except 1).

Hence, 5\sqrt{5} is not a rational number. So, we conclude that 5\sqrt{5} is an irrational number.

Question 2

Prove that 7\sqrt{7} is an irrational number.

Answer

Let 7\sqrt{7} be a rational number, then

7=pq,\sqrt{7} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

7=p2q2p2=7q2....(i)\Rightarrow 7 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 7q^2 \qquad \text{....(i)}

As 7 divides 7q2, so 7 divides p2 but 7 is prime

7 divides p(Theorem 1)\Rightarrow 7 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 7m, where m is an integer.

Substituting this value of p in (i), we get

(7m)2=7q249m2=7q27m2=q2(7m)^2 = 7q^2 \\[0.5em] \Rightarrow 49m^2 = 7q^2 \\[0.5em] \Rightarrow 7m^2 = q^2 \\[0.5em]

As 7 divides 7m2, so 7 divides q2 but 7 is prime

7 divides q(Theorem 1)\Rightarrow 7 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 7. This contradicts that p and q have no common factors (except 1).

Hence, 7\sqrt{7} is not a rational number. So, we conclude that 7\sqrt{7} is an irrational number.

Question 3

Prove that 6\sqrt{6} is an irrational number.

Answer

Suppose that 6\sqrt{6} is a rational number, then

6=pq,\sqrt{6} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

6=p2q2p2=6q2....(i)\Rightarrow 6 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 6q^2 \qquad \text{....(i)}

As 2 divides 6q2, so 2 divides p2 but 2 is prime

2 divides p(Theorem 1)\Rightarrow 2 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 2k, where k is some integer.

Substituting this value of p in (i), we get

(2k)2=6q24k2=6q22k2=3q2(2k)^2 = 6q^2 \\[0.5em] \Rightarrow 4k^2 = 6q^2 \\[0.5em] \Rightarrow 2k^2 = 3q^2 \\[0.5em]

As 2 divides 2k2, so 2 divides 3q2

\Rightarrow 2 divides 3 or 2 divides q2

But 2 does not divide 3, therefore, 2 divides q2

\Rightarrow 2 divides q      (Theorem 1)

Thus, p and q have a common factor 2. This contradicts that p and q have no common factors (except 1).

Hence, our supposition is wrong. Therefore, 6\sqrt{6} is not a rational number. So, we conclude that 6\sqrt{6} is an irrational number.

Question 4

Prove that 111\dfrac{1}{\sqrt{11}} is an irrational number.

Answer

Let 111\dfrac{1}{\sqrt{11}} be a rational number, then

111=pq,\dfrac{1}{\sqrt{11}} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

111=p2q2q2=11p2....(i)\Rightarrow \dfrac{1}{11} = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow q^2 = 11p^2 \qquad \text{....(i)}

As 11 divides 11p2, so 11 divides q2 but 11 is prime

11 divides q(Theorem 1)\Rightarrow 11 \text{ divides } q \qquad \text{(Theorem 1)}

Let q = 11m, where m is an integer.

Substituting this value of q in (i), we get

(11m)2=11p2121m2=11p211m2=p2(11m)^2 = 11p^2 \\[0.5em] \Rightarrow 121m^2 = 11p^2 \\[0.5em] \Rightarrow 11m^2 = p^2 \\[0.5em]

As 11 divides 11m2, so 11 divides p2 but 11 is prime

11 divides p(Theorem 1)\Rightarrow 11 \text{ divides } p \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 11. This contradicts that p and q have no common factors (except 1).

Hence, 111\dfrac{1}{\sqrt{11}} is not a rational number. So, we conclude that 111\dfrac{1}{\sqrt{11}} is an irrational number.

Question 5

Prove that 2\sqrt{2} is an irrational number. Hence, show that 323 - \sqrt{2} is an irrational number.

Answer

Let 2\sqrt{2} be a rational number, then

2=pq,\sqrt{2} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

2=p2q2p2=2q2....(i)\Rightarrow 2 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 2q^2 \qquad \text{....(i)}

As 2 divides 2q2, so 2 divides p2 but 2 is prime

2 divides p(Theorem 1)\Rightarrow 2 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 2m, where m is an integer.

Substituting this value of p in (i), we get

(2m)2=2q24m2=2q22m2=q2(2m)^2 = 2q^2 \\[0.5em] \Rightarrow 4m^2 = 2q^2 \\[0.5em] \Rightarrow 2m^2 = q^2 \\[0.5em]

As 2 divides 2m2, so 2 divides q2 but 2 is prime

2 divides q(Theorem 1)\Rightarrow 2 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 2. This contradicts that p and q have no common factors (except 1).

Hence, 2\sqrt{2} is not a rational number. So, we conclude that 2\sqrt{2} is an irrational number.

Suppose that 323 - \sqrt{2} is a rational number, say r.

Then, 323 - \sqrt{2} = r (note that r ≠ 0)

2=r32=3r\Rightarrow - \sqrt{2} = r - 3 \\[0.5em] \Rightarrow \sqrt{2} = 3 - r \\[0.5em]

As r is rational and r ≠ 0, so 3 - r is rational

2\Rightarrow \sqrt{2} is rational

But this contradicts that 2\sqrt{2} is irrational. Hence, our supposition is wrong.

323 - \sqrt{2} is an irrational number.

Question 6

Prove that 3\sqrt{3} is an irrational number. Hence, show that 253\dfrac{2}{5}\sqrt{3} is an irrational number.

Answer

Let 3\sqrt{3} be a rational number, then

3=pq,\sqrt{3} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

3=p2q2p2=3q2....(i)\Rightarrow 3 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 3q^2 \qquad \text{....(i)}

As 3 divides 3q2, so 3 divides p2 but 3 is prime

3 divides p(Theorem 1)\Rightarrow 3 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 3m, where m is an integer.

Substituting this value of p in (i), we get

(3m)2=3q29m2=3q23m2=q2(3m)^2 = 3q^2 \\[0.5em] \Rightarrow 9m^2 = 3q^2 \\[0.5em] \Rightarrow 3m^2 = q^2 \\[0.5em]

As 3 divides 3m2, so 3 divides q2 but 3 is prime

3 divides q(Theorem 1)\Rightarrow 3 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 3. This contradicts that p and q have no common factors (except 1).

Hence, 3\sqrt{3} is not a rational number. So, we conclude that 3\sqrt{3} is an irrational number.

Suppose that 253\dfrac{2}{5}\sqrt{3} is a rational number, say r.

Then, 253\dfrac{2}{5}\sqrt{3} = r (note that r ≠ 0)

3=52r\Rightarrow \sqrt{3} = \dfrac{5}{2}r \\[0.5em]

As r is rational and r ≠ 0, so 52r\dfrac{5}{2}r is rational
[∵ System of rational numbers is closed under all four fundamental arithmetic operations (except division by zero)]

3\Rightarrow \sqrt{3} is rational

But this contradicts that 3\sqrt{3} is irrational. Hence, our supposition is wrong.

253\dfrac{2}{5}\sqrt{3} is an irrational number.

Question 7

Prove that 5\sqrt{5} is an irrational number. Hence, show that 3+25-3 + 2\sqrt{5} is an irrational number.

Answer

Let 5\sqrt{5} be a rational number, then

5=pq,\sqrt{5} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

5=p2q2p2=5q2....(i)\Rightarrow 5 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 5q^2 \qquad \text{....(i)}

As 5 divides 5q2, so 5 divides p2 but 5 is prime

5 divides p(Theorem 1)\Rightarrow 5 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 5m, where m is an integer.

Substituting this value of p in (i), we get

(5m)2=5q225m2=5q25m2=q2(5m)^2 = 5q^2 \\[0.5em] \Rightarrow 25m^2 = 5q^2 \\[0.5em] \Rightarrow 5m^2 = q^2 \\[0.5em]

As 5 divides 5m2, so 5 divides q2 but 5 is prime

5 divides q(Theorem 1)\Rightarrow 5 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 5. This contradicts that p and q have no common factors (except 1).

Hence, 5\sqrt{5} is not a rational number. So, we conclude that 5\sqrt{5} is an irrational number.

Suppose that 3+25-3 + 2\sqrt{5} is a rational number, say r.

Then, 3+25-3 + 2\sqrt{5} = r (note that r ≠ 0)

25=r+35=r+32\Rightarrow 2\sqrt{5} = r + 3 \\[0.5em] \Rightarrow \sqrt{5} = \dfrac{r + 3}{2} \\[0.5em]

As r is rational and r ≠ 0, so r+32\dfrac{r + 3}{2} is rational

5\Rightarrow \sqrt{5} is rational

But this contradicts that 5\sqrt{5} is irrational. Hence, our supposition is wrong.

3+25-3 + 2\sqrt{5} is an irrational number.

Question 8

Prove that the following numbers are irrational:

(i)5+2(ii)353(iii)237(iv)25\begin{matrix} \text{(i)} & 5 + \sqrt{2} \\[0.5em] \text{(ii)} & 3 - 5\sqrt{3} \\[0.5em] \text{(iii)} & 2\sqrt{3} - 7 \\[0.5em] \text{(iv)} & \sqrt{2} - \sqrt{5} \end{matrix}

Answer

(i) 5+2\text{(i) } 5 + \sqrt{2}

Let us assume that 5+25 + \sqrt{2} is a rational number, say r.

Then,

5+2=r2=r55 + \sqrt{2} = r \\[0.5em] \Rightarrow \sqrt{2} = r - 5

As r is rational, r - 5 is rational

2\Rightarrow \sqrt{2} is rational

But this contradicts the fact that 2\sqrt{2} is irrational.

Hence, our assumption is wrong.

5+25 + \sqrt{2} is an irrational number.

(ii) 353\text{(ii) } 3 - 5\sqrt{3}

Let us assume that 3533 - 5\sqrt{3} is a rational number, say r.

Then,

353=r53=3r3=3r53 - 5\sqrt{3} = r \\[0.5em] \Rightarrow 5\sqrt{3} = 3 - r \\[0.5em] \Rightarrow \sqrt{3} = \dfrac{3 - r}{5} \\[0.5em]

As r is rational, 3 - r is rational

3r5\Rightarrow \dfrac{3 - r}{5} is rational

3\Rightarrow \sqrt{3} is rational

But this contradicts the fact that 3\sqrt{3} is irrational.

Hence, our assumption is wrong.

3533 - 5\sqrt{3} is an irrational number.

(iii) 237\text{(iii) } 2\sqrt{3} - 7

Let us assume that 2372\sqrt{3} - 7 is a rational number, say r.

Then,

237=r23=r+73=r+722\sqrt{3} - 7 = r \\[0.5em] \Rightarrow 2\sqrt{3} = r + 7 \\[0.5em] \Rightarrow \sqrt{3} = \dfrac{r + 7}{2} \\[0.5em]

As r is rational, r + 7 is rational

r+72\Rightarrow \dfrac{r + 7}{2} is rational

3\Rightarrow \sqrt{3} is rational

But this contradicts the fact that 3\sqrt{3} is irrational.

Hence, our assumption is wrong.

2372\sqrt{3} - 7 is an irrational number.

(iv) 2+5\text{(iv) } \sqrt{2} + \sqrt{5}

Let us assume that 2+5\sqrt{2} + \sqrt{5} is a rational number, say r.

Then,

2+5=r5=r2(5)2=(r2)25=r2+222r22r=r2+2522r=r232=r232r\sqrt{2} + \sqrt{5} = r \\[0.5em] \Rightarrow \sqrt{5} = r - \sqrt{2} \\[0.5em] \Rightarrow (\sqrt{5})^2 = (r - \sqrt{2})^2 \\[0.5em] \Rightarrow 5 = r^2 + 2 - 2\sqrt{2}r \\[0.5em] \Rightarrow 2\sqrt{2}r = r^2 + 2 - 5 \\[0.5em] \Rightarrow 2\sqrt{2}r = r^2 - 3 \\[0.5em] \Rightarrow \sqrt{2} = \dfrac{r^2 - 3}{2r} \\[0.5em]

As r is rational,

r232r\Rightarrow \dfrac{r^2 - 3}{2r} is rational

2\Rightarrow \sqrt{2} is rational

But this contradicts the fact that 2\sqrt{2} is irrational.

Hence, our assumption is wrong.

2+5\sqrt{2} + \sqrt{5} is an irrational number.

Exercise 1.3

Question 1

Locate 10\sqrt{10} and 17\sqrt{17} on the number line.

Answer

Locating 10\sqrt{10}:

Representing 10 as the sum of squares of two natural numbers:

10 = 9 + 1 = 32 + 12

Let l be the number line. If point O represents number 0 and point A represents number 3, then draw a line segment OA = 3 units.

At A, draw AC ⟂ OA. From AC, cut off AB = 1 unit.

We observe that OAB is a right angled triangle at A. By Pythagoras theorem, we get:

OB2=OA2+AB2OB2=32+12OB2=9+1OB2=10OB=10unitsOB^2 = OA^2 + AB^2 \\[0.5em] \Rightarrow OB^2 = 3^2 + 1^2 \\[0.5em] \Rightarrow OB^2 = 9 + 1 \\[0.5em] \Rightarrow OB^2 = 10 \\[0.5em] \Rightarrow OB = \sqrt{10} \text{units} \\[0.5em]

With O as centre and radius = OB, we draw an arc of a circle to meet the number line l at point P.

As OP = OB = 10\sqrt{10} units, the point P will represent the number 10\sqrt{10} on the number line as shown in the figure above.

Locating 17\sqrt{17}:

Representing 17 as the sum of squares of two natural numbers:

17 = 16 + 1 = 42 + 12

Let l be the number line. If point O represents number 0 and point A represents number 4, then draw a line segment OA = 4 units.

At A, draw AC ⟂ OA. From AC, cut off AB = 1 unit.

We observe that OAB is a right angled triangle at A. By Pythagoras theorem, we get:

OB2=OA2+AB2OB2=42+12OB2=16+1OB2=17OB=17unitsOB^2 = OA^2 + AB^2 \\[0.5em] \Rightarrow OB^2 = 4^2 + 1^2 \\[0.5em] \Rightarrow OB^2 = 16 + 1 \\[0.5em] \Rightarrow OB^2 = 17 \\[0.5em] \Rightarrow OB = \sqrt{17} \text{units} \\[0.5em]

With O as centre and radius = OB, we draw an arc of a circle to meet the number line l at point P.

As OP = OB = 17\sqrt{17} units, the point P will represent the number 17\sqrt{17} on the number line as shown in the figure above.

Question 2

Write the decimal expansion of each of the following numbers and say what kind of decimal expansion each has:

(i)36100(ii)418(iii)29(iv)211(v)313(vi)329400\begin{matrix} \text{(i)} & \dfrac{36}{100} \\[1.5em] \text{(ii)} & 4\dfrac{1}{8} \\[1.5em] \text{(iii)} & \dfrac{2}{9} \\[1.5em] \text{(iv)} & \dfrac{2}{11} \\[1.5em] \text{(v)} & \dfrac{3}{13} \\[1.5em] \text{(vi)} & \dfrac{329}{400} \\[1.5em] \end{matrix}

Answer

(i) 36100\text{(i) } \dfrac{36}{100}

Write the decimal expansion of 36/100 say what kind of decimal expansion it is. ML Aggarwal ICSE Class 9.

36100=0.36\therefore \dfrac{36}{100} = 0.36

Remainder becomes zero.

Decimal expansion of 36100\bold{\dfrac{36}{100}} is terminating.

(ii) 418\text{(ii) } 4\dfrac{1}{8}

Write the decimal expansion of 4(1/8) say what kind of decimal expansion it is. ML Aggarwal ICSE Class 9.

418=4.125\therefore 4\dfrac{1}{8} = 4.125

Remainder becomes zero.

Decimal expansion of 418\bold{4\dfrac{1}{8}} is terminating.

(iii) 29\text{(iii) } \dfrac{2}{9}

Write the decimal expansion of 2/9 say what kind of decimal expansion it is. ML Aggarwal ICSE Class 9.

29=0.2222.....=0.2\therefore \dfrac{2}{9} = 0.2222..... = 0.\overline{2}

Remainder is repeating.

Decimal expansion of 29\bold{\dfrac{2}{9}} is non-terminating repeating.

(iv) 211\text{(iv) } \dfrac{2}{11}

Write the decimal expansion of 2/11 say what kind of decimal expansion it is. ML Aggarwal ICSE Class 9.

211=0.1818.....=0.18\therefore \dfrac{2}{11} = 0.1818..... = 0.\overline{18}

Remainder is repeating.

Decimal expansion of 211\bold{\dfrac{2}{11}} is non-terminating repeating.

(v) 313\text{(v) } \dfrac{3}{13}

Write the decimal expansion of 3/13 say what kind of decimal expansion it is. ML Aggarwal ICSE Class 9.

313=0.2307692307.....=0.230769\therefore \dfrac{3}{13} = 0.2307692307..... = 0.\overline{230769}

Remainder is repeating.

Decimal expansion of 313\bold{\dfrac{3}{13}} is non-terminating repeating.

(vi) 329400\text{(vi) } \dfrac{329}{400}

Write the decimal expansion of 329/400 say what kind of decimal expansion it is. ML Aggarwal ICSE Class 9.

329400=0.8225\therefore \dfrac{329}{400} = 0.8225

Remainder becomes zero.

Decimal expansion of 329400\bold{\dfrac{329}{400}} is terminating.

Question 3

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(i)133125(ii)178(iii)2375(iv)615(v)1258625(vi)77210\begin{matrix} \text{(i)} & \dfrac{13}{3125} \\[1.5em] \text{(ii)} & \dfrac{17}{8} \\[1.5em] \text{(iii)} & \dfrac{23}{75} \\[1.5em] \text{(iv)} & \dfrac{6}{15} \\[1.5em] \text{(v)} & \dfrac{1258}{625} \\[1.5em] \text{(vi)} & \dfrac{77}{210} \\[1.5em] \end{matrix}

Answer

(i) 133125\text{(i) } \dfrac{13}{3125}

The given number 133125\dfrac{13}{3125} is in its lowest form.

Prime factorization of denominator 3125:

5312556255125525551\begin{array}{l|l} 5 & 3125 \\ \hline 5 & 625 \\ \hline 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

3125 = 5 x 5 x 5 x 5 x 5 x 1
= 55 x 1
= 1 x 55
= 20 x 55    [∵ 20 = 1]

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 133125\dfrac{13}{3125} has a terminating decimal expansion.

(ii) 178\text{(ii) } \dfrac{17}{8}

The given number 178\dfrac{17}{8} is in its lowest form.

Prime factorization of denominator 8:

2824221\begin{array}{l|l} 2 & 8 \\ \hline 2 & 4 \\ \hline 2 & 2 \\ \hline & 1 \end{array}

8 = 2 x 2 x 2 x 1
= 23 x 1
= 23 x 50    [∵ 50 = 1]

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 178\dfrac{17}{8} has a terminating decimal expansion.

(iii) 2375\text{(iii) } \dfrac{23}{75}

The given number 2375\dfrac{23}{75} is in its lowest form.

Prime factorization of denominator 75:

375525551\begin{array}{l|l} 3 & 75 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

75 = 3 x 5 x 5 x 1
= 3 x 52 x 1
= 3 x 52 x 20    [∵ 20 = 1]

Denominator has a prime factor 3 other than 2 or 5.

∴ The given number 2375\dfrac{23}{75} has a non-terminating repeating decimal expansion.

(iv) 615\text{(iv) } \dfrac{6}{15}

Both numerator and denominator contain common factor 3. Reducing the number to its lowest form:

615=3×23×5=25\dfrac{6}{15} = \dfrac{\cancel{3} \times 2}{\cancel{3} \times 5} \\[0.5em] = \dfrac{2}{5}

The Denominator 5 = 20 x 51

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 615\dfrac{6}{15} has a terminating decimal expansion.

(v) 1258625\text{(v) } \dfrac{1258}{625}

The given number 1258625\dfrac{1258}{625} is in its lowest form.

Prime factorization of denominator 625:

56255125525551\begin{array}{l|l} 5 & 625 \\ \hline 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

625 = 5 x 5 x 5 x 5 x 1
= 54 x 1
= 1 x 54
= 20 x 54    [∵ 20 = 1]

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 1258625\dfrac{1258}{625} has a terminating decimal expansion.

(vi) 77210\text{(vi) } \dfrac{77}{210}

Both numerator and denominator contain common factor 7. Reducing the number to its lowest form:

77210=7×117×30=1130\dfrac{77}{210} = \dfrac{\cancel{7} \times 11}{\cancel{7} \times 30} \\[0.5em] = \dfrac{11}{30}

Prime factorization of denominator 30:

230315551\begin{array}{l|l} 2 & 30 \\ \hline 3 & 15 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

30 = 2 x 3 x 5

Denominator has a prime factor 3 other than 2 or 5.

∴ The given number 77210\dfrac{77}{210} has a non-terminating repeating decimal expansion.

Question 4

Without actually performing the long division, find if 98710500\dfrac{987}{10500} will have terminating or non-terminating repeating decimal expansion. Give reasons for your answer.

Answer

GCD of numerator and denominator is 21. Reducing the number to its lowest form:

98710500=21×4721×500=47500\dfrac{987}{10500} = \dfrac{\cancel{21} \times 47}{\cancel{21} \times 500} \\[0.5em] = \dfrac{47}{500}

Prime factorization of denominator 500:

250022505125525551\begin{array}{l|l} 2 & 500 \\ \hline 2 & 250 \\ \hline 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

500 = 2 x 2 x 5 x 5 x 5 = 22 x 53

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 98710500\dfrac{987}{10500} has a terminating decimal expansion.

Question 5

Write the decimal expansions of the following numbers which have terminating decimal expansions:

(i)178(ii)133125(iii)780(iv)615(v)22×754(vi)2371500\begin{matrix} \text{(i)} & \dfrac{17}{8} \\[1.5em] \text{(ii)} & \dfrac{13}{3125} \\[1.5em] \text{(iii)} & \dfrac{7}{80} \\[1.5em] \text{(iv)} & \dfrac{6}{15} \\[1.5em] \text{(v)} & \dfrac{2^2 \times 7}{5^4} \\[1.5em] \text{(vi)} & \dfrac{237}{1500} \\[1.5em] \end{matrix}

Answer

(i) 178\text{(i) } \dfrac{17}{8}

The given number 178\dfrac{17}{8} is in its lowest form.

Prime factorization of denominator 8:

2824221\begin{array}{l|l} 2 & 8 \\ \hline 2 & 4 \\ \hline 2 & 2 \\ \hline & 1 \end{array}

8 = 2 x 2 x 2 x 1
= 23 x 50    [∵ 50 = 1]

178=1723=17×5323×53=17×125(2×5)3=2125103=2.125178=2.125\dfrac{17}{8} = \dfrac{17}{2^3} \\[0.5em] = \dfrac{17 \times 5^3}{2^3 \times 5^3} \\[0.5em] = \dfrac{17 \times 125}{(2 \times 5)^3} \\[0.5em] = \dfrac{2125}{10^3} \\[0.5em] = 2.125 \\[0.5em] \bold{\therefore \dfrac{17}{8} = 2.125}

(ii) 133125\text{(ii) } \dfrac{13}{3125}

The given number 133125\dfrac{13}{3125} is in its lowest form.

Prime factorization of denominator 3125:

5312556255125525551\begin{array}{l|l} 5 & 3125 \\ \hline 5 & 625 \\ \hline 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

3125 = 5 x 5 x 5 x 5 x 5 x 1
= 55 x 1
= 1 x 55
= 20 x 55    [∵ 20 = 1]

133125=1355=13×2525×55=13×32(2×5)5=416105=0.00416133125=0.00416\dfrac{13}{3125} = \dfrac{13}{5^5} \\[0.5em] = \dfrac{13 \times 2^5}{2^5 \times 5^5} \\[0.5em] = \dfrac{13 \times 32}{(2 \times 5)^5} \\[0.5em] = \dfrac{416}{10^5} \\[0.5em] = 0.00416 \\[0.5em] \bold{\therefore \dfrac{13}{3125} = 0.00416}

(iii) 780\text{(iii) } \dfrac{7}{80}

The given number 780\dfrac{7}{80} is in its lowest form.

Prime factorization of denominator 80:

280240220210551\begin{array}{l|l} 2 & 80 \\ \hline 2 & 40 \\ \hline 2 & 20 \\ \hline 2 & 10 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

80 = 2 x 2 x 2 x 2 x 5
= 24 x 5
= 24 x 51

780=724×51=7×5324×51×53=7×12524×54=7×125(2×5)4=875104=0.0875780=0.0875\dfrac{7}{80} = \dfrac{7}{2^4 \times 5^1} \\[0.5em] = \dfrac{7 \times 5^3}{2^4 \times 5^1 \times 5^3} \\[0.5em] = \dfrac{7 \times 125}{2^4 \times 5^4} \\[0.5em] = \dfrac{7 \times 125}{(2 \times 5)^4} \\[0.5em] = \dfrac{875}{10^4} \\[0.5em] = 0.0875 \\[0.5em] \bold{\therefore \dfrac{7}{80} = 0.0875}

(iv) 615\text{(iv) } \dfrac{6}{15}

GCD of numerator and denominator is 3. Reducing the number to its lowest form:

615=3×23×5=25\dfrac{6}{15} = \dfrac{\cancel{3} \times 2}{\cancel{3} \times 5} \\[0.5em] = \dfrac{2}{5}

615=25=2×22×5=410=0.4615=0.4\dfrac{6}{15} = \dfrac{2}{5} \\[0.5em] = \dfrac{2 \times 2}{2 \times 5} \\[0.5em] = \dfrac{4}{10} \\[0.5em] = 0.4 \\[0.5em] \bold{\therefore \dfrac{6}{15} = 0.4}

(v) 22×754\text{(v) } \dfrac{2^2 \times 7}{5^4}

22×754=22×7×2454×24=4×7×16(2×5)4=448104=0.044822×754=0.0448\dfrac{2^2 \times 7}{5^4} = \dfrac{2^2 \times 7 \times 2^4}{5^4 \times 2^4} \\[0.5em] = \dfrac{4 \times 7 \times 16}{(2 \times 5)^4} \\[0.5em] = \dfrac{448}{10^4} \\[0.5em] = 0.0448 \\[0.5em] \bold{\therefore \dfrac{2^2 \times 7}{5^4} = 0.0448}

(vi) 2371500\text{(vi) } \dfrac{237}{1500}

GCD of numerator and denominator is 3. Reducing the number to its lowest form:

2371500=3×793×500=79500\dfrac{237}{1500} = \dfrac{\cancel{3} \times 79}{\cancel{3} \times 500} \\[0.5em] = \dfrac{79}{500}

2371500=79500=79×2500×2=158103=0.1582371500=0.158\dfrac{237}{1500} = \dfrac{79}{500} \\[0.5em] = \dfrac{79 \times 2}{500 \times 2} \\[0.5em] = \dfrac{158}{10^3} \\[0.5em] = 0.158 \\[0.5em] \bold{\therefore \dfrac{237}{1500} = 0.158}

Question 6

Write the denominator of the rational number 2575000\dfrac{257}{5000} in the form 2m × 5n where m, n are non-negative integers. Hence, write its decimal expansion without actual division.

Answer

The given number 2575000\dfrac{257}{5000} is in its lowest form.

Prime factorization of denominator 5000:

25000225002125056255125525551\begin{array}{l|l} 2 & 5000 \\ \hline 2 & 2500 \\ \hline 2 & 1250 \\ \hline 5 & 625 \\ \hline 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

5000 = 2 x 2 x 2 x 5 x 5 x 5 x 5
= 23 x 54

Hence, denominator of rational number dfrac2575000dfrac{257}{5000} in the form 2m × 5n is 23 x 54 where m = 3 and n = 4.

2575000=25723×54=257×223×54×2=51424×54=514(2×5)4=514104=0.05142575000=0.0514\dfrac{257}{5000} = \dfrac{257}{2^3 \times 5^4} \\[0.5em] = \dfrac{257 \times 2}{2^3 \times 5^4 \times 2} \\[0.5em] = \dfrac{514}{2^4 \times 5^4} \\[0.5em] = \dfrac{514}{(2 \times 5)^4} \\[0.5em] = \dfrac{514}{10^4} \\[0.5em] = 0.0514 \\[0.5em] \bold{\therefore \dfrac{257}{5000} = 0.0514}

Question 7

Answer

Question 8

Answer

Question 9

Answer

Question 10

Answer

Question 11

Answer

Question 12

Answer

Question 13

Answer

Question 14

Answer

Question 15

Answer

Question 16

Answer

Question 17

Answer

Exercise 1.4

Question 1

Answer

Question 2

Answer

Question 3

Answer

Question 4

Answer

Question 5

Answer

Question 6

Answer

Question 7

Answer

Question 8

Answer

Question 9

Answer

Question 10

Answer

Question 11

Answer

Question 12

Answer

Exercise 1.5

Question 1

Answer

Question 2

Answer

Question 3

Answer

Question 4

Answer

Question 5

Answer

Question 6

Answer

Question 7

Answer

Question 8

Answer

Question 9

Answer

Question 10

Answer

Question 11

Answer

Question 12

Answer