Polynomials

PrevNextBack

Polynomials

Exercise 2.1

Question 1

Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i) 4x2 - 3x + 7

(ii) y2 + 2\sqrt{2}

(iii) 3t+t23\sqrt{t} + t\sqrt{2}

(iv) y+2yy + \dfrac{2}{y}

(v) x10 + y3 + t50

Answer

(i) 4x2 - 3x + 7
It's a polynomial in one variable i.e., x

(ii) y2 + 2\sqrt{2}
It's a polynomial in one variable i.e., y

(iii) 3t3\sqrt{t} + t2t\sqrt{2} = 3t1/2 + t 2\sqrt{2}
It is not a polynomial as degree of t is not a whole number.

(iv) y + 2y\dfrac{2}{y} = y + 2y-1
It is in not a polynomial as degree cannot be negative (-ve) in polynomial.

(v) x10 + y3 + t50
It is polynomial but not in one variable as variables are x, y and t here. Hence, it is a polynomial in three variables.

Question 2

Write the coefficients of x2 in each of the following:

(i) 2 + x2 + x

(ii) 2 - x2 + x3

(iii) π2\dfrac{π}{2} x2 + x

(iv) 2\sqrt{2}x - 1

Answer

(i) 2 + x2 + x

Coefficient of x2 is 1.

(ii) 2 - x2 + x3

Coefficient of x2 is (-1).

(iii) π2\dfrac{π}{2} x2 + x

Coefficient of x2 is = π2\dfrac{π}{2}

(iv) 2\sqrt{2}x - 1

Coefficient of x2 is 0.

Question 3

Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Answer

One example of a binomial of degree 35 is:

3y35 + 5

One example of a monomial of degree 100 is:

2x100

Question 4

Write the degree of each of the following polynomials:

(i) 5x3 + 4x2 +7x

(ii) 4 - y2

(iii) 5t - 7\sqrt{7}

(iv) 3

Answer

(i) 5x3 + 4x2 +7x

Degree of polynomial is 3.

(ii) 4 - y2

Degree of polynomial is 2.

(iii) 5t - 7\sqrt{7}

Degree of polynomial is 1.

(iv) 3

Degree of polynomial is 0. Degree of constant term is always zero.

Question 5

Classify the following as linear, quadratic and cubic polynomials:

(i) x2 + x

(ii) x - x3

(iii) y + y2 + 4

(iv) 1 + x

(v) 3t

(vi) r2

(vii) 7x3

Answer

(i) x2 + x — Quadratic polynomial [∵ Degree is 2]

(ii) x - x3 — Cubic polynomial [∵ Degree is 3]

(iii) y + y2 + 4 — Quadratic polynomial [∵ Degree is 2]

(iv) 1 + x — Linear polynomial [∵ Degree is 1]

(v) 3t — Linear polynomial [∵ Degree is 1]

(vi) r2 — Quadratic polynomial [∵ Degree is 2]

(vii) 7x3 — Cubic polynomial [∵ Degree is 3]

Exercise 2.2

Question 1

Find the value of the polynomial 5x - 4x2 + 3 at

(i) x = 0

(ii) x = -1

(iii) x = 2

Answer

p(x) = 5x - 4x2 + 3

(i) x = 0

We put x = 0 in the place of x in p(x)

p(0) = 5(0) - 4(0)2 +3

= 0 + 0 + 3

p(0) = 3

Hence, at x = 0, 5x - 4x2 + 3 = 3

(ii) x = -1

We put x = -1 in the place of x in p(x)

p(-1) = 5(-1) - 4(-1)2 + 3

= (-5) (-4) + 3

= (-9) + 3

= -6

Hence, at x = -1, 5x - 4x2 + 3 = -6

(iii) x = 2

We put x = 2 in the place of x in p(x)

p(2) = 5(2) - 4(2)2 +3

= 10 - 4 x 4 + 3

= 10 - 16 + 3

= 13 - 16

= -3

Hence, at x = 2, 5x - 4x2 + 3 = -3

Question 2

Find p(0), p(1) and p(2) for each of the following polynomials:

(i) p(y) = y2 - y + 1

(ii) p(t) = 2 + t + 2t2 - t3

(iii) p(x) = x3

(iv) p(x) = (x - 1) (x + 1)

Answer

(i) p(y) = y2 - y + 1

Putting y = 0 we get,

p(0) = (0)2 - 0 + 1

= 0 - 0 + 1

= 1

∴ p(0) = 1

Putting y = 1 we get,

p(1) = (1)2 - 1 + 1

= 1 - 1 + 1

= 2 - 1

= 1

∴ p(1) = 1

Putting y = 2 we get,

p(2) = (2)2 - 2 + 1

= 4 - 2 + 1

= 5 - 2

= 3

∴ p(2) = 1

Hence, for p(y) = y2 - y + 1, p(0) = 1, p(1) = 1 and p(2) = 1

(ii) p(t) = 2 + t + 2t2 - t3

Putting t = 0 we get,

p(0) = 2 + 0 + 2(02) - 03

= 2 + 0 + 0 - 0

= 2

∴ p(0) = 2

Putting t = 1 we get,

p(1) = 2 + 1 + 2(12) - 13

= 2 + 1 + 2 - 1

= 4

∴ p(1) = 4

Putting t = 2 we get,

p(2) = 2 + 2 + 2(22) - 23

= 4 + 2(4) - 8

= 4 + 8 - 8

= 4

∴ p(2) = 4

Hence, for p(t) = 2 + t + 2t2 - t3, p(0) = 2, p(1) = 4 and p(2) = 4

(iii) p(x) = x3

Putting x = 0 we get,

p(0) = (0)3

= 0

∴ p(0) = 0

Putting x = 1 we get,

p(1) = (1)3

= 1

∴ p(1) = 1

Putting x = 2 we get,

p(2) = (2)3

= 8

∴ p(2) = 8

Hence, for p(x) = x3, p(0) = 0, p(1) = 1 and p(2) = 8

(iv) p(x) = (x - 1)(x + 1)

Putting x = 0 we get,

p(0) = (0 - 1)(0 + 1)

= (-1) x 1

= (-1)

∴ p(0) = -1

Putting x = 1 we get,

p(1) = (1 - 1)(1 + 1)

= 0 x 2

= 0

∴ p(1) = 0

Putting x = 2 we get

p(2) = (2 - 1) (2 + 1)

= 1 x 3

= 3

∴ p(2) = 3

Hence, for p(x) = (x - 1) (x + 1), p(0) = -1, p(1) = 0 and p(2) = 3

Question 3

Verify whether the following are zeroes of the polynomial, indicated against them.

(i) p(x) = 3x + 1, x = 13-\dfrac{1}{3}

(ii) p(x) = 5x - π, x = 45\dfrac{4}{5}

(iii) p(x) = x2 - 1, x = 1, -1

(iv) p(x) = (x + 1)(x - 2), x = -1, 2

(v) p(x) = x2, x = 0

(vi) p(x) = lx + m, x = ml-\dfrac{m}{l}

(vii) p(x) = 3x2 - 1, x = (13)-\Big(\dfrac{1}{\sqrt{3}}\Big), (23)\Big(\dfrac{2}{\sqrt{3}}\Big)

(viii) p(x) = 2x + 1, x = 12\dfrac{1}{2}

Answer

(i) p(x) = 3x + 1

Putting x = 13-\dfrac{1}{3} we get,

p(13)\text{p}\Big(-\dfrac{1}{3}\Big) = 3(13)3\Big(-\dfrac{1}{3}\Big) + 1

= -1 + 1

= 0

Hence, x = 13-\dfrac{1}{3} is zeroes of this polynomial.

(ii) p(x) = 5x - π

Putting x = 45\dfrac{4}{5} we get,

p(45)=5(45)π\text{p}\Big(\dfrac{4}{5}\Big) = 5\Big(\dfrac{4}{5}\Big) - \pi

= 4 - π

Hence, x = 45\dfrac{4}{5} is not a zeroes of this polynomial.

(iii) p(x) = x2 - 1

Putting x = 1 we get,

p(1) = (1)2 - 1

= 0

Putting x = -1 we get

p(-1) = (-1)2 - 1

= 1 - 1

= 0

Hence, x = 1, -1 is zeroes of this polynomial.

(iv) p(x) = (x + 1)(x - 2)

Putting x = -1 we get,

p(1) = (-1 + 1)(-1 - 2)

= 0 x (-3)

= 0

Putting x = 2 we get,

p(2) = (2 + 1)(2 - 2)

= 3 x 0

= 0

Hence, x = -1, 2 are the zeroes of this polynomial.

(v) p(x) = x2

Putting x = 0 we get,

p(0) = (0)2

= 0

Hence, x = 0 is the zero of this polynomial.

(vi) p(x) = lx + m

Putting x = -ml\dfrac{m}{l} we get,

p - (ml)=lx(ml)\Big(\dfrac{m}{l}\Big) = l x -\Big(\dfrac{m}{l}\Big) + m

= -m + m

= 0

Hence, x = ml-\dfrac{m}{l} is the zero of this polynomial.

(vii) p(x) = 3x2 - 1

Putting x = 13-\dfrac{1}{\sqrt{3}} we get,

p-(13)\Big(\dfrac{1}{\sqrt{3}}\Big) = 3 x -(13)\Big(\dfrac{1}{\sqrt{3}}\Big)2 - 1

= 3 x 13\dfrac{1}{3} - 1

= 1 - 1

= 0

Putting x = 23\dfrac{2}{\sqrt{3}} we get,

p (23)\Big(\dfrac{2}{\sqrt{3}}\Big) = 3 x (23)\Big(\dfrac{2}{\sqrt{3}}\Big)2 - 1

= 3 x 43\dfrac{4}{3} - 1

= 4 - 1

= 3

Hence, x = 13-\dfrac{1}{\sqrt{3}} is zeroes of polynomial but x = 23\dfrac{2}{\sqrt{3}} is not a zeroes of this polynomial.

(viii) p(x) = 2x + 1

Putting x = 12\dfrac{1}{2} we get,

p(12)\Big(\dfrac{1}{2}\Big) = 2 x 12\dfrac{1}{2} + 1

= 1 + 1

= 2

No, x = 12\dfrac{1}{2} is not the zeroes of this polynomial.

Question 4

Find the zero of the polynomial in each of the following cases:

(i) p(x) = x + 5

(ii) p(x) = x - 5

(iii) p(x) = 2x + 5

(iv) p(x) = 3x - 2

(v) p(x) = 3x

(vi) p(x) = ax, a ≠ 0

(vii) p(x) = cx + d, c ≠ 0, c, d are real numbers.

Answer

(i) p(x) = x + 5

⇒ p(x) = 0

⇒ x + 5 = 0

⇒ x = -5

Hence, -5 is a zero of polynomial x + 5

(ii) p(x) = x - 5

⇒ p(x) = 0

⇒ x - 5 = 0

⇒ x = 5

Hence, 5 is a zero of polynomial x - 5

(iii) p(x) = 2x + 5

⇒ p(x) = 0

⇒ 2x + 5 = 0

⇒ 2x = -5

⇒ x = 52-\dfrac{5}{2}

Hence, 52-\dfrac{5}{2} is a zero of polynomial 2x + 5

(iv) p(x) = 3x - 2

⇒ p(x) = 0

⇒ 3x - 2 = 0

⇒ 3x = 2

⇒ x = 23\dfrac{2}{3}

Hence, 23\dfrac{2}{3} is a zero of polynomial 3x - 2

(v) p(x) = 3x

⇒ p(x) = 0

⇒ 3x = 0

⇒ x = 03\dfrac{0}{3}

⇒ x = 0

Hence, 0 is a zero of polynomial 3x

(vi) p(x) = ax

⇒ p(x) = 0

⇒ ax = 0

⇒ x = 0a\dfrac{0}{a}

⇒ x = 0

Hence, 0 is a zero of polynomial ax

(vii) p(x) = cx + d

⇒ p(x) = 0

⇒ cx + d = 0

⇒ cx = -d

x = dc\dfrac{-d}{c}

Hence, dc-\dfrac{d}{c} is a zero of polynomial cx + d

Exercise 2.3

Question 1

Determine which of the following polynomials has (x + 1) a factor :

(i) x3 + x2 + x + 1

(ii) x4 + x3 + x2 + x + 1

(iii) x4 + 3x3 + 3x2 + x + 1

(iv) x3 - x2 - (2 + 2\sqrt{2})x + 2\sqrt{2}

Answer

(i) x3 + x2 + x + 1

⇒ x + 1 = 0

⇒ x = -1

p(x) = x3 + x2 + x + 1

p(-1) = (-1)3 + (-1)2 + (-1) + 1

= -1 + 1 -1 + 1

= 0

Remainder is zero (0), so (x + 1) is factor of this polynomial.

(ii) x4 + x3 + x2 + x + 1

⇒ x + 1 = 0

⇒ x = -1

p(x) = x4 + x3 + x2 + x + 1

p(-1) = (-1)4 + (-1)3 + (-1)2 + (-1) + 1

= 1 -1 + 1 -1 + 1

= 1

Remainder is not zero (0), so (x + 1) is not a factor of this polynomial.

(iii) x4 + 3x3 + 3x2 + x + 1

⇒ x + 1 = 0

⇒ x = -1

p(x) = x4 + 3x3 + 3x2 + x + 1

p(-1) = (-1)4 + 3 x (-1)3 + 3 x (-12) + (-1) + 1

= 1 -3 + 3 -1 + 1

= 1

Remainder is not zero (0), so (x + 1) is not a factor of this polynomial.

(iv) x3 - x2 - (2 + 2\sqrt{2})x + 2\sqrt{2}

⇒ x + 1 = 0

⇒ x = -1

p(x) = x3 - x2 - (2 + 2\sqrt{2})x + 2\sqrt{2}

p(-1) = (-1)3 - (-1)2 - (2 + 2\sqrt{2})(-1) + 2\sqrt{2}

= -1 - 1 + 2 + 2\sqrt{2} + 2\sqrt{2}

= -2 + 2 + 2 2\sqrt{2}

= 2 2\sqrt{2}

Remainder is not zero (0), so (x + 1) is not a factor of this polynomial.

Question 2

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

(i) p(x) = 2x3 + x2 - 2x - 1, g(x) = x + 1

(ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2

(iii) p(x) = x3 - 4x2 + x + 6, g(x) = x - 3

Answer

(i) p(x) = 2x3 + x2 - 2x - 1

g(x) = x + 1

⇒ x + 1 = 0

⇒ x = -1

Putting x = -1 we get,

p(-1) = 2(-1)3 + (-1)2 - 2(-1) - 1

= -2 + 1 + 2 -1

= 0

Remainder is zero (0), so g(x) is factor of p(x).

(ii) p(x) = x3 + 3x2 + 3x + 1

g(x) = x + 2

⇒ x + 2 = 0

⇒ x = -2

Putting x = -2 we get,

p(-2) = (-2)3 + 3(-2)2 + 3(-2) + 1

= -8 + 3(4) - 6 + 1

= -8 + 12 - 6 + 1

= 13 - 14

= -1

Remainder is not zero (0), so g(x) is not a factor of p(x).

(iii) p(x) = x3 - 4x2 + x + 6

g(x) = x - 3

⇒ x - 3 = 0

⇒ x = 3

Putting x = -3 we get,

p(3) = (3)3 - 4(3)2 + 3 + 6

= 27 - 4(9) + 9

= 27 - 36 + 9

= 36 - 36

= 0

Remainder is zero (0), so g(x) is a factor of p(x).

Question 3

Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:

(i) p(x) = x2 + x + k

(ii) p(x) = 2x2 + kx + 2\sqrt{2}

(iii) p(x) = kx2 - 2\sqrt{2}x + 1

(iv) p(x) = kx2 - 3x + k

Answer

(i) p(x) = x2 + x + k

⇒ x - 1 = 0

⇒ x = 1

Putting x = 1 we get,

p(1) = (1)2 + 1 + k

= 1 + 1 + k

⇒ 2 + k = 0

⇒ k = -2

So the value of k = -2

(ii) p(x) = 2x2 + kx + 2\sqrt{2}

⇒ x - 1 = 0

⇒ x = 1

Putting x = 1 we get,

p(1) = 2(1)2 + k(1) + 2\sqrt{2}

⇒ 2 + k + 2\sqrt{2}

⇒ k = -2 -2\sqrt{2}

⇒ k = -(2 + 2\sqrt{2})

So the value of k = -(2 + 2\sqrt{2})

(iii) p(x) = kx2 - 2\sqrt{2}x + 1

⇒ x - 1 = 0

⇒ x = 1

Putting x = 1 we get,

p(1) = k(1)2 - 2\sqrt{2}(1) + 1

⇒ k - 2\sqrt{2} + 1 = 0

⇒ k = 2\sqrt{2} - 1

So the value of k = 2\sqrt{2} - 1

(iv) p(x) = kx2 - 3x + k

⇒ x - 1 = 0

⇒ x = 1

Putting x = 1 we get,

p(1) = k(1)2 -3(1) + k

= k - 3 + k

⇒ 2k - 3 = 0

⇒ 2k = 3

⇒ k = 32\dfrac{3}{2}

So the value of k = 32\dfrac{3}{2}

Question 4

Factorise :

(i) 12x2 - 7x + 1

(ii) 2x2 + 7x + 3

(iii) 6x2 + 5x - 6

(iv) 3x2 - x - 4

Answer

(i) 12x2 - 7x + 1

= 12x2 - (4 + 3)x + 1

= 12x2 -4x -3x + 1

= 4x(3x - 1) -1(3x - 1)

= (3x - 1)(4x - 1)

Hence, 12x2 - 7x + 1 = (3x - 1)(4x - 1)

(ii) 2x2 + 7x + 3

= 2x2 + (6 + 1)x + 3

= 2x2 + 6x + x + 3

= 2x(x + 3) + 1(x + 3)

= (2x + 1)(x + 3)

Hence, 2x2 + 7x + 3 = (2x + 1)(x + 3)

(iii) 6x2 + 5x - 6

= 6x2 + (9 - 4)x - 6

= 6x2 +9x - 4x - 6

= 3x(2x + 3) -2(2x + 3)

= (2x + 3)(3x - 2)

Hence, 6x2 + 5x - 6 = (2x + 3)(3x - 2)

(iv) 3x2 - x - 4

= 3x2 - (4 - 3)x - 4

= 3x2 - 4x + 3x - 4

= x(3x - 4) + 1(3x - 4)

= (3x - 4)(x + 1)

Hence, 3x2 - x - 4 = (3x - 4)(x + 1)

Question 5

Factorise :

(i) x3 - 2x2 - x + 2

(ii) x3 - 3x2 - 9x - 5

(iii) x3 + 13x2 + 32x + 20

(iv) 2y3 + y2 - 2y - 1

Answer

(i) x3 - 2x2 - x + 2

Let (x - a) is a factor, a = 1, -1, 2, -2.......

Putting a = 1

x - 1 = 0

x = 1

p(x) = x3 - 2x2 - x + 2

p(1) = (1)3 - 2 x (1)2 - 1 + 2

= 1 - 2 - 1 + 2

= 0

Hence, (x - 1) is the factor of x3 - 2x2 - x + 2

On dividing, x3 - 2x2 - x + 2 by (x - 1)

x1)x2x2x1)x32x2x+2x1)2+x3+x2x1x32x2x+2x1)x32+x2+xx1)x32x2(3)2x+2x1)x32x2(31)+2x+2x1)x32x2(31)2x×\begin{array}{l} \phantom{x - 1)}{\quad x^2 -x - 2} \\ x - 1\overline{\smash{\big)}\quad x^3 - 2x^2 - x + 2} \\ \phantom{x - 1)}\phantom{2}\underline{\underset{-}{+}x^3 \underset{+}{-}x^2} \\ \phantom{{x - 1}x^3-2}-x^2 - x + 2 \\ \phantom{{x - 1)}x^3-2}\underline{\underset{+}{-}x^2 \underset{-}{+} x} \\ \phantom{{x - 1)}{x^3-2x^{2}(3)}}-2x + 2 \\ \phantom{{x - 1)}{x^3-2x^{2}(31)}}\underline{\underset{+}{-}2x \underset{-}{+} 2} \\ \phantom{{x - 1)}{x^3-2x^{2}(31)}{-2x}}\times \end{array}

we get quotient = x2 - x - 2

Factorising x2 - x - 2,

= x2 - x - 2

= x2 -(2 - 1)x - 2

= x2 - 2x + x -2

= x( x - 2) + 1(x + 2)

= (x + 1)(x - 2)

∴ x2 - x - 2 = (x + 1)(x - 2)

∴ p(x) = x3 - 2x2 - x + 2 = (x - 1) (x + 1) (x - 2)

So, factors are (x - 1) (x + 1) (x - 2)

(ii) x3 - 3x2 - 9x - 5

Let (x - a) is a factor, a = 1, -1, 2, -2.......

Putting a = -1

x + 1 = 0

x = -1

p(x) = x3 - 3x2 - 9x - 5

p(-1) = (-1)3 - 3 x (-1)2 - 9 x (-1) - 5

= -1 - 3 + 9 - 5

= -9 + 9

= 0

Hence, (x + 1) is a factor of x3 - 3x2 - 9x - 5

On dividing, x3 - 3x2 - 9x - 5 by (x + 1)

x+1)x24x5x+1)x33x29x5x1)2+x3+x2x+1x324x29xx+1)x32+4x2+4xx+1)x32x2(3)5x5x+1)x32x2(31)+5x+5x+1)x32x2(31)2×\begin{array}{l} \phantom{x + 1)}{\quad x^2 -4x - 5} \\ x + 1\overline{\smash{\big)}\quad x^3 - 3x^2 - 9x - 5} \\ \phantom{x - 1)}\phantom{2}\underline{\underset{-}{+}x^3 \underset{-}{+}x^2} \\ \phantom{{x + 1}x^3-2}-4x^2 - 9x \\ \phantom{{x + 1)}x^3-2}\underline{\underset{+}{-}4x^2 \underset{+}{-} 4x} \\ \phantom{{x + 1)}{x^3-2x^{2}(3)}}-5x - 5 \\ \phantom{{x + 1)}{x^3-2x^{2}(31)}}\underline{\underset{+}{-}5x \underset{+}{-} 5} \\ \phantom{{x + 1)}{x^3-2x^{2}(31)}{-2}}\times \end{array}

We get quotient = x2 - 4x - 5

Factorising x2 - 4x - 5

x2 -(5 - 1)x - 5

x2 -5x + x - 5

x(x - 5) + 1(x - 5)

(x + 1) (x - 5)

∴ x2 - 4x - 5 = (x + 1) (x - 5)

∴ p(x) = x3 - 3x2 -9x - 5 = (x + 1) (x + 1) (x - 5)

So, factors are (x + 1) (x + 1) (x - 5)

(iii) x3 + 13x2 + 32x + 20

Let (x - a) is a factor, a = 1, -1, 2, -2.......

Putting a = -1

x + 1 = 0

x = -1

p(x) = x3 + 13x2 + 32x + 20

p(-1) = (-1)3 + 13 x (-1)2 + 32 x (-1) + 20

= -1 + 13 - 32 + 20

= -33 + 33

= 0

Hence, (x + 1) is a factor of x3 + 13x2 + 32x + 20

On dividing, x3 + 13x2 + 32x + 20 by (x + 1)

x+1)x2+12x+20x+1)x3+13x2+32x+20x1)2+x3+x2x+1x3212x2+32x+20x+1)x31+12x2+12xx+1)x32x2(3)20x+20x+1)x32x23+20x+20x+1)x32x2(3)2×\begin{array}{l} \phantom{x + 1)}{\quad x^2 +12x + 20} \\ x + 1\overline{\smash{\big)}\quad x^3 + 13x^2 + 32x + 20} \\ \phantom{x - 1)}\phantom{2}\underline{\underset{-}{+}x^3 \underset{-}{+}x^2} \\ \phantom{{x + 1}x^3-2}12x^2 + 32x + 20 \\ \phantom{{x + 1)}x^31}\underline{\underset{-}{+}12x^2 \underset{-}{+} 12x} \\ \phantom{{x + 1)}{x^3-2x^{2}(3)}}20x + 20 \\ \phantom{{x + 1)}{x^3-2x^{2}3}}\underline{\underset{-}{+}20x \underset{-}{+} 20} \\ \phantom{{x + 1)}{x^3-2x^{2}(3)}{-2}}\times \end{array}

We get quotient = x2 + 12x + 20

Factorising x2 + 12x + 20

x2 + 10x + 2x + 20

x(x + 10) + 2(x + 10)

(x + 10)(x + 2)

∴ x2 + 12x + 20 = (x + 10)(x + 2)

∴ p(x) = x3 + 13x2 + 32x + 20 = (x + 1) (x + 10) (x + 2)

So, factors are (x + 1) (x + 10) (x + 2)

(iv) 2y3 + y2 - 2y - 1

Let (y - a) is a factor, a = 1, -1, 2, -2.......

Putting a = 1

y - 1 = 0

y = 1

p(y) = 2y3 + y2 - 2y - 1

p(1) = 2 x (1)3 + (1)2 - 2 x 1 - 1

= 2 + 1 - 2 - 1

= 0

Hence, (y - 1) is a factor of 2y3 + y2 - 2y - 1

On dividing, 2y3 + y2 - 2y - 1 by (y - 1)

y1)2y2+3y+1y1)2y3+y22y1y1)+2y3+2y2y1x32333y22yy1)x32+3y2+3yy1)x32x2(3333)y1y1)x32x23333+y+1y1)x32x2(333)2×\begin{array}{l} \phantom{y - 1)}{\quad 2y^2 + 3y + 1} \\ y - 1\overline{\smash{\big)}\quad 2y^3 + y^2 - 2y - 1} \\ \phantom{y - 1)}\underline{\underset{-}{+}2y^3 \underset{+}{-}2y^2} \\ \phantom{{y - 1}x^3-233}3y^2 - 2y \\ \phantom{{y - 1)}x^3-2}\underline{\underset{-}{+}3y^2 \underset{+}{-} 3y} \\ \phantom{{y - 1)}{x^3-2x^{2}(3333)}}y - 1 \\ \phantom{{y - 1)}{x^3-2x^{2}3333}}\underline{\underset{-}{+}y \underset{+}{-} 1} \\ \phantom{{y - 1)}{x^3-2x^{2}(333)}{-2}}\times \end{array}

We get quotient = 2y2 + 3y + 1

Factorising 2y2 + 3y + 1

2y2 + 2y + y +1

2y(y + 1) + 1(y + 1)

(y + 1)(2y + 1)

∴ 2y2 + 3y + 1 = (y + 1)(2y + 1)

∴ p(y) = 2y3 + y2 - 2y - 1 = (y - 1)(y + 1)(2y + 1)

So, factors are (y - 1)(y + 1)(2y + 1)

Exercise 2.4

Question 1

Use suitable identities to find the following products:

(i) (x + 4)(x + 10)

(ii) (x + 8)(x - 10)

(iii) (3x + 4)(3x - 5)

(iv) (y2 + 32\dfrac{3}{2}) (y2 - 32\dfrac{3}{2})

(v) (3 - 2x)(3 + 2x)

Answer

(i) (x + 4)(x + 10)

[∵ (x + a)(x + b) = x2 + (a + b)x + ab]

Putting a = 4, b = 10

= x2 + (4 + 10)x + 4 x 10

= x2 + 14x + 40

Hence, (x + 4)(x + 10) = x2 + 14x + 40

(ii) (x + 8)(x - 10)

[∵ (x + a)(x + b) = x2 + (a + b)x + ab]

Putting a = 8 , b = -10

= x2 + [8 + (-10)]x + 8 x (-10)

= x2 - 2x - 80

Hence, (x + 8)(x - 10) = x2 - 2x - 80

(iii) (3x + 4)(3x - 5)

[∵ (x + a)(x + b) = x2 + (a + b)x + ab]

Putting a = 4, b = -5, x = 3x

= (3x)2 + [4 + (-5)](3x) + (4)(-5)

= 9x2 + (-1)(3x) - 20

= 9x2 - 3x - 20

Hence, (3x + 4) (3x - 5) = 9x2 - 3x - 20

(iv) (y2 + 32\dfrac{3}{2})(y2 - 32\dfrac{3}{2})

[∵ (a + b)(a - b) = a2 - b2]

Putting a = y2, b = 32\dfrac{3}{2}

= (y2)2 - (32\dfrac{3}{2})2

= y4 - 94\dfrac{9}{4}

Hence, (y2 + 32\dfrac{3}{2}) (y2 - 32\dfrac{3}{2}) = y4 - 94\dfrac{9}{4}

(v) (3 - 2x)(3 + 2x)

[∵ (a - b)(a + b) = a2 - b2]

Putting a = 3, b = 2x

= (3)2 - (2x)2

= 9 - 4x2

Hence, (3 - 2x)(3 + 2x) = 9 - 4x2

Question 2

Evaluate the following products without multiplying directly:

(i) 103 × 107

(ii) 95 × 96

(iii) 104 × 96

Answer

(i) 103 × 107

We can write it as,

= (100 + 3)(100 + 7)

[∵ (x + a)(x + b) = x2 + (a + b)x + ab]

Putting x = 100, a = 3, b = 7

= (100)2 + (3 + 7)(100) + (3)(7)

= 10000 + (10)(100) + 21

= 10000 + 1000 + 21

= 11021

Hence, 103 × 107 = 11021

(ii) 95 × 96

We can write it as,

[100 + (-5)][100 + (-4)]

[∵ (x + a)(x + b) = x2 + (a + b)x + ab]

Putting x = 100, a = -5 , b = -4

= (100)2 - [(-5) + (-4)](100) + (-5) x (-4)

= 10000 - (9)(100) + 20

= 10000 - 900 + 20

= 10020 - 900

= 9120

Hence, 95 × 96 = 9120

(iii) 104 × 96

We can write it as,

(100 + 4)(100 - 4)

[∵ (a + b)(a - b) = a2 - b2]

Putting a = 100, b = 4

= (100)2 - (4)2

= 10000 - 16

= 9984

Hence, 104 × 96 = 9984

Question 3

Factorise the following using appropriate identities:

(i) 9x2 + 6xy + y2

(ii) 4y2 - 4y + 1

(iii) x2(y2100)x^2 - \Big(\dfrac{y^2}{100}\Big)

Answer

(i) 9x2 + 6xy + y2

[∵ a2 + 2ab + b2 = (a + b)2]

= (3x)2 + 2(3x)(y) + (y)2

= (3x + y)2

Hence, 9x2 + 6xy + y2 = (3x + y)(3x + y)

(ii) 4y2 - 4y + 1

[∵ a2 - 2ab + b2 = (a - b)2]

= (2y)2 - 2(2y)(1) + (1)2

= (2y - 1)2

Hence, 4y2 - 4y + 1 = (2y - 1)(2y - 1)

(iii) x2(y2100)x^2 - \Big(\dfrac{y^2}{100}\Big)

[∵ a2 - b2 = (a - b)(a + b)]

x2(y2100)=x2(y10)2=(xy10)(x+y10)x^2 - \Big(\dfrac{y^2}{100}\Big) \\[1em] = x^2 - \Big(\dfrac{y}{10}\Big)^2 \\[1em] = \Big(x - \dfrac{y}{10}\Big) \Big(x + \dfrac{y}{10}\Big)

Hence, x2(y2100)x^2 - \Big(\dfrac{y^2}{100}\Big) = (xy10)(x+y10)\Big(x - \dfrac{y}{10}\Big) \Big(x + \dfrac{y}{10}\Big)

Question 4

Expand each of the following, using suitable identities:

(i) (x + 2y + 4z)2

(ii) (2x - y + z)2

(iii) (-2x + 3y + 2z)2

(iv) (3a - 7b - c)2

(v) (-2x + 5y - 3z)2

(vi) [14a12b+1]2\Big[\dfrac{1}{4}a - \dfrac{1}{2}b + 1\Big]^2

Answer

(i) (x + 2y + 4z)2

[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]

Putting x = x, y = 2y, z = 4z

= (x)2 + (2y)2 + (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)

= x2 + 4y2 + 16z2 + 4xy + 16yz + 8zx

(ii) (2x - y + z)2

[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]

Putting x = 2x, y = (-y), z = z

= (2x)2 + (-y)2 + (z)2 + 2(2x)(-y) + 2(-y)(z) + 2(z)(2x)

= 4x2 + y2 + z2 - 4xy - 2yz + 4zx

(iii) (-2x + 3y + 2z)2

[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]

Putting x = -2x, y = 3y, z = 2z

= (-2x)2 + (3y)2 + (2z)2 + 2(-2x)(3y) + 2(3y)(2z) + 2(2z)(-2x)

= 4x2 + 9y2 + 4z2 - 12xy + 12yz - 8zx

(iv) (3a - 7b - c)2

[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]

Putting x = 3a, y = (-7b), z = (-c)

= (3a)2 + (-7b)2 + (-c)2 + 2(3a)(-7b) + 2(-7b)(-c) + 2(-c)(3a)

= 9a2 + 49b2 + c2 - 42ab + 14bc - 6ac

(v) (-2x + 5y - 3z)2

[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]

Putting x = -2x, y = 5y, z = (-3z)

= (-2x)2 + (5y)2 + (-3z)2 + 2(-2x)(5y) + 2(5y)(-3z) + 2(-3z)(-2x)

= 4x2 + 25y2 + 9z2 - 20xy - 30yz + 12zx

(vi) [14a12b+1]2\Big[\dfrac{1}{4}a - \dfrac{1}{2}b + 1\Big]^2

[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]

Putting x = a4,y=b2\dfrac{a}{4}, y = -\dfrac{b}{2}, z = 1

=(a4)2+(b2)2+(1)2+2(a4)(b2)+2(b2)(1)+2(1)(a4)=a216+b24+1ab4b+a2= \Big(\dfrac{a}{4}\Big)^2 + \Big(-\dfrac{b}{2}\Big)^2 + (1)^2 + 2\Big(\dfrac{a}{4}\Big) \Big(-\dfrac{b}{2}\Big) + 2\Big(-\dfrac{b}{2}\Big)(1) + 2(1) \Big(\dfrac{a}{4}\Big) \\[1em] = \dfrac{a^2}{16} + \dfrac{b^2}{4} + 1 - \dfrac{ab}{4} -b + \dfrac{a}{2}

Question 5

Factorise:

(i) 4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz

(ii) 2x2 + y2 + 8z2 - 222\sqrt{2}xy + 424\sqrt{2}yz - 8xz

Answer

(i) 4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz

= (2x)2 + (3y)2 + (-4z)2 + 2(2x)(3y) + 2(3y)(-4z) + 2(-4z)(2x)

= (2x + 3y - 4z)2 [∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]

Hence, 4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz = (2x + 3y - 4z)(2x + 3y - 4z)

(ii) 2x2 + y2 + 8z2 - 222\sqrt{2}xy + 424\sqrt{2}yz - 8xz

[∵ (a + b + c)2 = (a)2 + (b)2 + (c)2 + 2ab + 2bc + 2ca]

=(2x)2+(y)2+(22z)2+2(2x)(y)+2(y)(22z)+2(22z)(2x)=(2x+y+22z)2= (-\sqrt{2}x)^2 + (y)^2 + (2\sqrt{2}z)^2 + 2(-\sqrt{2}x)(y) + 2(y)(2\sqrt{2}z) + 2(2\sqrt{2}z)(-\sqrt{2}x) \\[1em] = (-\sqrt{2}x + y + 2\sqrt{2}z)^2

Hence, 2x2 + y2 + 8z2 -222\sqrt{2}xy + 424\sqrt{2}yz - 8zx = (-2\sqrt{2}x + y + 222\sqrt{2}z)(-2\sqrt{2}x + y + 222\sqrt{2}z)

Question 6

Write the following cubes in expanded form:

(i) (2x + 1)3

(ii) (2a - 3b)3

(iii) [3x2+1]3\Big[\dfrac{3x}{2} + 1\Big]^3

(iv) [x23y]3\Big[x - \dfrac{2}{3}y\Big]^3

Answer

(i) (2x + 1)3

We know that:

(a + b)3= (a)3 + (b)3 + 3a2b + 3ab2

Putting a = 2x, b = 1

= (2x)3 + (1)3 + 3(2x)2(1) + 3(2x)(1)2

= 8x3 + 12x2 + 6x + 1

Hence, (2x + 1)3 = 8x3 + 12x2 + 6x + 1

(ii) (2a - 3b)3

We know that:

(a - b)3= (a)3 - (b)3 - 3a2b + 3ab2

Putting a = 2a, b = 3b

= (2a)3 - (3b)3 - 3(2a)2(3b) + 3(2a)(3b)2

= 8a3 - 27b3 - 3(4a2)(3b) + 3(2a)(9b2)

= 8a3 - 27b3 - 36a2b + 54ab2

Hence, (2a - 3b)3 = 8a3 - 27b3 - 36a2b + 54ab2

(iii) [3x2+1]3\Big[\dfrac{3x}{2} + 1\Big]^3

We know that:

(a + b)3 = (a)3 + (b)3 + 3ab(a + b)

Putting a = 32x\dfrac{3}{2}x, b = 1

=(32)3+(1)3+3(3x2)(1)(3x2+1)=27x38+1+(9x2)(3x2+1)=27x38+1+(9x2)(3x2)+9x2(1)=27x38+27x24+9x2+1= \Big(\dfrac{3}{2}\Big)^3 + (1)^3 + 3 \Big(\dfrac{3x}{2}\Big)(1) \Big(\dfrac{3x}{2} + 1\Big) \\[1em] = \dfrac{27x^3}{8} + 1 + \Big(\dfrac{9x}{2}\Big) \Big(\dfrac{3x}{2} + 1\Big) \\[1em] = \dfrac{27x^3}{8} + 1 + \Big(\dfrac{9x}{2}\Big) \Big(\dfrac{3x}{2}\Big) + \dfrac{9x}{2}(1)\\[1em] = \dfrac{27x^3}{8} + \dfrac{27x^2}{4} + \dfrac{9x}{2} + 1

Hence, [3x2+1]3=27x38+27x24+9x2+1\Big[\dfrac{3x}{2} + 1\Big]^3 = \dfrac{27x^3}{8} + \dfrac{27x^2}{4} + \dfrac{9x}{2} + 1

(iv) [x23y]3\Big[x - \dfrac{2}{3}y\Big]^3

We know that:

(a - b)3 = (a)3 - (b)3 - 3ab(a - b)

Putting a = x, b = 23y-\dfrac{2}{3}y

=(x)3[23y]33(x)[23y][x23y]=x3827y32xy[x23y]=x3827y32x2y+43xy2= (x)^3 - \Big[-\dfrac{2}{3}y\Big]^3 - 3(x)\Big[-\dfrac{2}{3}y\Big] \Big[x - \dfrac{2}{3}y\Big]\\[1em] = x^3 - \dfrac{8}{27}y^3 - 2xy\Big[x - \dfrac{2}{3}y\Big]\\[1em] = x^3 - \dfrac{8}{27}y^3 - 2x^2y + \dfrac{4}{3}xy^2

Hence, [x23y]3=x3827y32x2y+43xy2\Big[x - \dfrac{2}{3}y\Big]^3 = x^3 - \dfrac{8}{27}y^3 - 2x^2y + \dfrac{4}{3}xy^2

Question 7

Evaluate the following using suitable identities:

(i) (99)3

(ii) (102)3

(iii) (998)3

Answer

(i) (99)3

We can write it as,

= (100 - 1)3

We know that,

(a - b)3 = (a)3 - (b)3 - 3ab(a - b)

Putting a = 100 , b = 1

= (100)3 - (1)3 - 3 x 100 x 1(100 - 1)

= 1000000 - 1 - 300 x 99

= 1000000 - 1 - 29700

= 970299

Hence, (99)3 = 970299

(ii) (102)3

We can write it as,

= (100 + 2)3

We know that,

(a + b)3 = (a)3 + (b)3 + 3ab(a + b)

Putting a = 100 , b = 2

= (100)3 + (2)3 + 3 x 100 x 2(100 + 2)

= 1000000 + 8 + 600 x 102

= 1000000 + 8 + 61200

= 1061208

Hence, (102)3 = 1061208

(iii) (998)3

We can write it as,

= (1000 - 2)3

We know that,

(a - b)3 = (a)3 - (b)3 - 3ab(a - b)

Putting a = 1000 , b = 2

= (1000)3 - (2)3 - 3 x 1000 x 2(1000 - 2)

= 1000000000 - 8 - 6000 x 998

= 1000000000 - 8 - 5988000

= 994011992

Hence, (998)3 = 994011992

Question 8

Factorise each of the following:

(i) 8a3 + b3 + 12a2b + 6ab2

(ii) 8a3 - b3 - 12a2b + 6ab2

(iii) 27 - 125a3 - 135a + 225a2

(iv) 64a3 - 27b3 - 144a2b + 108ab2

(v) 27p3 - 1216\dfrac{1}{216} - 92\dfrac{9}{2}p2 + 14\dfrac{1}{4}p

Answer

(i) 8a3 + b3 + 12a2b + 6ab2

[∵ a3 + b3 + 3a2b + 3ab2 = (a + b)3]

= (2a)3 + (b)3 + 3(2a)2(b) + 3(2a)(b)2

= (2a + b)3

Hence, 8a3 + b3 + 12a2b + 6ab2 = (2a + b)(2a + b)(2a + b)

(ii) 8a3 - b3 - 12a2b + 6ab2

[∵ a3 - b3 - 3a2b + 3ab2 = (a - b)3]

= (2a)3 - (b)3 - 3(2a)2(b) + 3(2a)(b)2

= (2a - b)3

Hence, 8a3 - b3 - 12a2b + 6ab2 = (2a - b)(2a - b)(2a - b)

(iii) 27 - 125a3 - 135a + 225a2

[∵ a3 - b3 - 3a2b + 3ab2 = (a - b)3]

= (3)3 - (5a)3 - 3(3)2(5a) + 3(3)(5a)2

= (3 - 5a)3

Hence, 27 - 125a3 - 135a + 225a2 = (3 - 5a)(3 - 5a)(3 - 5a)

(iv) 64a3 - 27b3 - 144a2b + 108ab2

[∵ a3 - b3 - 3a2b + 3ab2 = (a - b)3]

= (4a)3 - (3b)3 - 3(4a)2(3b) + 3(4a)(3b)2

= (4a - 3b)3

Hence, 64a3 - 27b3 - 144a2b + 108ab2 = (4a - 3b)(4a - 3b)(4a - 3b)

(v) 27p3 - 1216\dfrac{1}{216} - 92\dfrac{9}{2}p2 + 14\dfrac{1}{4}p

[∵ a3 - b3 - 3a2b + 3ab2 = (a - b)3]

= (3p)3 - (16)\Big(\dfrac{1}{6}\Big)3 - 3(3p)2(16)\Big(\dfrac{1}{6}\Big) + 3(3p)(16)\Big(\dfrac{1}{6}\Big)2

= (3p16)3\Big(3p - \dfrac{1}{6}\Big)^3

Hence, 27p3 - 1216\dfrac{1}{216} - 92\dfrac{9}{2}p2 + 14\dfrac{1}{4}p = (3p16)\Big(3p - \dfrac{1}{6}\Big)\Big(3p - \dfrac{1}{6}\Big)(3p16)\Big(3p - \dfrac{1}{6}\Big)

Question 9

Verify :

(i) x3 + y3 = (x + y) (x2 - xy + y2)

(ii) x3 - y3 = (x - y) (x2 + xy + y2)

Answer

(i) x3 + y3 = (x + y) (x2 - xy + y2)

R.H.S

= (x + y) (x2 - xy + y2)

= (x)(x2 - xy + y2) + (y)(x2 - xy + y2)

= x3 - x2y + xy2 + yx2 - xy2 + y3

= x3 + y3

Hence, L.H.S = R.H.S

(ii) x3 - y3 = (x - y) (x2 + xy + y2)

R.H.S

= (x - y) (x2 + xy + y2)

= (x)(x2 + xy + y2) - (y)(x2 + xy + y2)

= x3 + x2y + xy2 - yx2 - xy2 - y3

= x3 - y3

Hence, L.H.S = R.H.S

Question 10

Factorise each of the following:

(i) 27y3 + 125z3

(ii) 64m3 - 343n3

Answer

(i) 27y3 + 125z3

[∵ x3 + y3 = (x + y)(x2 - xy + y2)]

⇒ 27y3 + 125z3 = (3y)3 + (5z)3

Putting x = 3y, y = 5z

R.H.S = (x + y)(x2 - xy + y2)

= (3y + 5z)[(3y)2 - (3y)(5z) + (5z)2]

= (3y + 5z)(9y2 - 15yz + 25z2)

Hence, 27y3 + 125z3 = (3y + 5z)(9y2 - 15yz + 25z2)

(ii) 64m3 - 343n3

[∵ a3 - b3 = (a - b)(a2 + ab + b2)]

⇒ 64m3 - 343n3 = (4m)3 - (7n)3

Putting a = 4m, b = 7n

R.H.S = (a - b)(a2 + ab + b2)

= (4m - 7n)[(4m)2 + (4m)(7n) + (7n)2]

= (4m - 7n)(16m2 + 28mn + 49n2)

Hence, 64m3 - 343n3 = (4m - 7n)(16m2 + 28mn + 49n2)

Question 11

Factorise : 27x3 + y3 + z3 - 9xyz

Answer

27x3 + y3 + z3 - 9xyz

[∵ x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)]

= (3x)3 + y3 + z3 - 3(3x)(y)(z)

= (3x + y + z)[(3x)2 + y2 + z2 - (3x)(y) - (y)(z) - (z)(3x)]

= (3x + y + z)(9x2 + y2 + z2 - 3xy - yz - 3zx)

Hence, 27x3 + y3 + z3 - 9xyz = (3x + y + z)(9x2 + y2 + z2 - 3xy - yz - 3zx)

Question 12

Verify that x3 + y3 +z3 - 3xyz = 12\dfrac{1}{2}(x + y + z)[(x - y)2 + (y - z)2 + (z - x)2]

Answer

R.H.S

= 12\dfrac{1}{2}(x + y + z)[(x - y)2 + (y - z)2 + (z - x)2]

= 12\dfrac{1}{2}(x + y + z)[(x2 + y2 - 2xy) + (y2 + z2 - 2yz) + (z2 + x2 - 2zx)] [∵ (a - b)2 = (a)2 + (b)2 - 2ab]

= 12\dfrac{1}{2}(x + y + z)[2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx]

= 12\dfrac{1}{2}(x + y + z) 2[x2 + y2 + z2 - xy - yz - zx]

= (x + y + z)[x2 + y2 + z2 - xy - yz - zx]

= x3 + y3 +z3 - 3xyz [∵ x3 + y3 +z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)]

Hence, L.H.S = R.H.S

Question 13

If x + y + z = 0, show that x3 + y3 + z3 = 3xyz

Answer

(x + y + z)3 = x3 + y3 + z3 - 3xyz

Given that x + y + z = 0

= (0)3 = x3 + y3 + z3 - 3xyz

⇒ 3xyz = x3 + y3 + z3

Hence proved

Question 14

Without actually calculating the cubes, find the value of each of the following:

(i) (-12)3 + (7)3 + (5)3

(ii) (28)3 + (-15)3 + (-13)3

Answer

(i) (-12)3 + (7)3 + (5)3

Here,

-12 + 7 + 5 = 0

As, x + y + z = 0

So, x3 + y3 + z3 = 3xyz

= 3 x (-12) x 7 x 5

= -1260

Hence, (-12)3 + (7)3 + (5)3 = -1260

(ii) (28)3 + (-15)3 + (-13)3

Here,

= 28 + (-15) + (-13)

= 28 - 15 - 13

= 0

As, x + y + z = 0

So, x3 + y3 + z3 = 3xyz

= 3 x 28 x (-15) x (-13)

= 16380

Hence, (28)3 + (-15)3 + (-13)3 = 16380

Question 15

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

(i) Area: 25a2 - 35a + 12

(ii) Area: 35y2 + 13y - 12

Answer

(i) 25a2 - 35a + 12

Area of Rectangle = Length x Breadth

= 25a2 - 35a + 12

= 25a2 -(20a + 15a) + 12

= 25a2 -20a -15a + 12

= 5a(5a - 4) - 3(5a - 4)

= (5a - 4)(5a - 3)

Hence, one possible answer is : Length = 5a - 3, Breadth = 5a - 4

(ii) 35y2 + 13y - 12

Area of Rectangle = Length x Breadth

= 35y2 + 13y - 12

= 35y2 +(28y - 15y) - 12

= 35y2 + 28y - 15y - 12

= 7y(5y + 4) - 3(5y + 4)

= (5y + 4)(7y - 3)

Hence, one possible answer is : Length = 7y - 3, Breadth = 5y + 4

Question 16

What are the possible expressions for the dimensions of the cuboids whose volume are given below?

(i) Volume: 3x2 - 12x

(ii) Volume: 12ky2 + 8ky - 20k

Answer

(i) Volume: 3x2 - 12x

Volume of Cuboid = Length x Breadth X Height

= 3x2 - 12x

= 3x(x - 4)

= 3(x)(x - 4)

Hence, one possible answer is : 3, x and x - 4.

(ii) Volume: 12ky2 + 8ky - 20k

= 12ky2 + 8ky - 20k

= 4k(3y2 + 2y - 5)

= 4k(3y2 + 5y - 3y - 5)

= 4k[y(3y + 5) -1(3y + 5)]

= 4k (y - 1)(3y + 5)

Hence, one possible answer is : 4k, 3y + 5 and y - 1.