Polynomials
Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.
(i) 4x2 - 3x + 7
(ii) y2 +
(iii)
(iv)
(v) x10 + y3 + t50
Answer
(i) 4x2 - 3x + 7
It's a polynomial in one variable i.e., x
(ii) y2 +
It's a polynomial in one variable i.e., y
(iii) + = 3t1/2 + t
It is not a polynomial as degree of t is not a whole number.
(iv) y + = y + 2y-1
It is in not a polynomial as degree cannot be negative (-ve) in polynomial.
(v) x10 + y3 + t50
It is polynomial but not in one variable as variables are x, y and t here. Hence, it is a polynomial in three variables.
Write the coefficients of x2 in each of the following:
(i) 2 + x2 + x
(ii) 2 - x2 + x3
(iii) x2 + x
(iv) x - 1
Answer
(i) 2 + x2 + x
Coefficient of x2 is 1.
(ii) 2 - x2 + x3
Coefficient of x2 is (-1).
(iii) x2 + x
Coefficient of x2 is =
(iv) x - 1
Coefficient of x2 is 0.
Give one example each of a binomial of degree 35, and of a monomial of degree 100.
Answer
One example of a binomial of degree 35 is:
3y35 + 5
One example of a monomial of degree 100 is:
2x100
Write the degree of each of the following polynomials:
(i) 5x3 + 4x2 +7x
(ii) 4 - y2
(iii) 5t -
(iv) 3
Answer
(i) 5x3 + 4x2 +7x
Degree of polynomial is 3.
(ii) 4 - y2
Degree of polynomial is 2.
(iii) 5t -
Degree of polynomial is 1.
(iv) 3
Degree of polynomial is 0. Degree of constant term is always zero.
Classify the following as linear, quadratic and cubic polynomials:
(i) x2 + x
(ii) x - x3
(iii) y + y2 + 4
(iv) 1 + x
(v) 3t
(vi) r2
(vii) 7x3
Answer
(i) x2 + x — Quadratic polynomial [∵ Degree is 2]
(ii) x - x3 — Cubic polynomial [∵ Degree is 3]
(iii) y + y2 + 4 — Quadratic polynomial [∵ Degree is 2]
(iv) 1 + x — Linear polynomial [∵ Degree is 1]
(v) 3t — Linear polynomial [∵ Degree is 1]
(vi) r2 — Quadratic polynomial [∵ Degree is 2]
(vii) 7x3 — Cubic polynomial [∵ Degree is 3]
Find the value of the polynomial 5x - 4x2 + 3 at
(i) x = 0
(ii) x = -1
(iii) x = 2
Answer
p(x) = 5x - 4x2 + 3
(i) x = 0
We put x = 0 in the place of x in p(x)
p(0) = 5(0) - 4(0)2 +3
= 0 + 0 + 3
p(0) = 3
Hence, at x = 0, 5x - 4x2 + 3 = 3
(ii) x = -1
We put x = -1 in the place of x in p(x)
p(-1) = 5(-1) - 4(-1)2 + 3
= (-5) (-4) + 3
= (-9) + 3
= -6
Hence, at x = -1, 5x - 4x2 + 3 = -6
(iii) x = 2
We put x = 2 in the place of x in p(x)
p(2) = 5(2) - 4(2)2 +3
= 10 - 4 x 4 + 3
= 10 - 16 + 3
= 13 - 16
= -3
Hence, at x = 2, 5x - 4x2 + 3 = -3
Find p(0), p(1) and p(2) for each of the following polynomials:
(i) p(y) = y2 - y + 1
(ii) p(t) = 2 + t + 2t2 - t3
(iii) p(x) = x3
(iv) p(x) = (x - 1) (x + 1)
Answer
(i) p(y) = y2 - y + 1
Putting y = 0 we get,
p(0) = (0)2 - 0 + 1
= 0 - 0 + 1
= 1
∴ p(0) = 1
Putting y = 1 we get,
p(1) = (1)2 - 1 + 1
= 1 - 1 + 1
= 2 - 1
= 1
∴ p(1) = 1
Putting y = 2 we get,
p(2) = (2)2 - 2 + 1
= 4 - 2 + 1
= 5 - 2
= 3
∴ p(2) = 1
Hence, for p(y) = y2 - y + 1, p(0) = 1, p(1) = 1 and p(2) = 1
(ii) p(t) = 2 + t + 2t2 - t3
Putting t = 0 we get,
p(0) = 2 + 0 + 2(02) - 03
= 2 + 0 + 0 - 0
= 2
∴ p(0) = 2
Putting t = 1 we get,
p(1) = 2 + 1 + 2(12) - 13
= 2 + 1 + 2 - 1
= 4
∴ p(1) = 4
Putting t = 2 we get,
p(2) = 2 + 2 + 2(22) - 23
= 4 + 2(4) - 8
= 4 + 8 - 8
= 4
∴ p(2) = 4
Hence, for p(t) = 2 + t + 2t2 - t3, p(0) = 2, p(1) = 4 and p(2) = 4
(iii) p(x) = x3
Putting x = 0 we get,
p(0) = (0)3
= 0
∴ p(0) = 0
Putting x = 1 we get,
p(1) = (1)3
= 1
∴ p(1) = 1
Putting x = 2 we get,
p(2) = (2)3
= 8
∴ p(2) = 8
Hence, for p(x) = x3, p(0) = 0, p(1) = 1 and p(2) = 8
(iv) p(x) = (x - 1)(x + 1)
Putting x = 0 we get,
p(0) = (0 - 1)(0 + 1)
= (-1) x 1
= (-1)
∴ p(0) = -1
Putting x = 1 we get,
p(1) = (1 - 1)(1 + 1)
= 0 x 2
= 0
∴ p(1) = 0
Putting x = 2 we get
p(2) = (2 - 1) (2 + 1)
= 1 x 3
= 3
∴ p(2) = 3
Hence, for p(x) = (x - 1) (x + 1), p(0) = -1, p(1) = 0 and p(2) = 3
Verify whether the following are zeroes of the polynomial, indicated against them.
(i) p(x) = 3x + 1, x =
(ii) p(x) = 5x - π, x =
(iii) p(x) = x2 - 1, x = 1, -1
(iv) p(x) = (x + 1)(x - 2), x = -1, 2
(v) p(x) = x2, x = 0
(vi) p(x) = lx + m, x =
(vii) p(x) = 3x2 - 1, x = ,
(viii) p(x) = 2x + 1, x =
Answer
(i) p(x) = 3x + 1
Putting x = we get,
= + 1
= -1 + 1
= 0
Hence, x = is zeroes of this polynomial.
(ii) p(x) = 5x - π
Putting x = we get,
= 4 - π
Hence, x = is not a zeroes of this polynomial.
(iii) p(x) = x2 - 1
Putting x = 1 we get,
p(1) = (1)2 - 1
= 0
Putting x = -1 we get
p(-1) = (-1)2 - 1
= 1 - 1
= 0
Hence, x = 1, -1 is zeroes of this polynomial.
(iv) p(x) = (x + 1)(x - 2)
Putting x = -1 we get,
p(1) = (-1 + 1)(-1 - 2)
= 0 x (-3)
= 0
Putting x = 2 we get,
p(2) = (2 + 1)(2 - 2)
= 3 x 0
= 0
Hence, x = -1, 2 are the zeroes of this polynomial.
(v) p(x) = x2
Putting x = 0 we get,
p(0) = (0)2
= 0
Hence, x = 0 is the zero of this polynomial.
(vi) p(x) = lx + m
Putting x = - we get,
p - + m
= -m + m
= 0
Hence, x = is the zero of this polynomial.
(vii) p(x) = 3x2 - 1
Putting x = we get,
p- = 3 x -2 - 1
= 3 x - 1
= 1 - 1
= 0
Putting x = we get,
p = 3 x 2 - 1
= 3 x - 1
= 4 - 1
= 3
Hence, x = is zeroes of polynomial but x = is not a zeroes of this polynomial.
(viii) p(x) = 2x + 1
Putting x = we get,
p = 2 x + 1
= 1 + 1
= 2
No, x = is not the zeroes of this polynomial.
Find the zero of the polynomial in each of the following cases:
(i) p(x) = x + 5
(ii) p(x) = x - 5
(iii) p(x) = 2x + 5
(iv) p(x) = 3x - 2
(v) p(x) = 3x
(vi) p(x) = ax, a ≠ 0
(vii) p(x) = cx + d, c ≠ 0, c, d are real numbers.
Answer
(i) p(x) = x + 5
⇒ p(x) = 0
⇒ x + 5 = 0
⇒ x = -5
Hence, -5 is a zero of polynomial x + 5
(ii) p(x) = x - 5
⇒ p(x) = 0
⇒ x - 5 = 0
⇒ x = 5
Hence, 5 is a zero of polynomial x - 5
(iii) p(x) = 2x + 5
⇒ p(x) = 0
⇒ 2x + 5 = 0
⇒ 2x = -5
⇒ x =
Hence, is a zero of polynomial 2x + 5
(iv) p(x) = 3x - 2
⇒ p(x) = 0
⇒ 3x - 2 = 0
⇒ 3x = 2
⇒ x =
Hence, is a zero of polynomial 3x - 2
(v) p(x) = 3x
⇒ p(x) = 0
⇒ 3x = 0
⇒ x =
⇒ x = 0
Hence, 0 is a zero of polynomial 3x
(vi) p(x) = ax
⇒ p(x) = 0
⇒ ax = 0
⇒ x =
⇒ x = 0
Hence, 0 is a zero of polynomial ax
(vii) p(x) = cx + d
⇒ p(x) = 0
⇒ cx + d = 0
⇒ cx = -d
x =
Hence, is a zero of polynomial cx + d
Determine which of the following polynomials has (x + 1) a factor :
(i) x3 + x2 + x + 1
(ii) x4 + x3 + x2 + x + 1
(iii) x4 + 3x3 + 3x2 + x + 1
(iv) x3 - x2 - (2 + )x +
Answer
(i) x3 + x2 + x + 1
⇒ x + 1 = 0
⇒ x = -1
p(x) = x3 + x2 + x + 1
p(-1) = (-1)3 + (-1)2 + (-1) + 1
= -1 + 1 -1 + 1
= 0
Remainder is zero (0), so (x + 1) is factor of this polynomial.
(ii) x4 + x3 + x2 + x + 1
⇒ x + 1 = 0
⇒ x = -1
p(x) = x4 + x3 + x2 + x + 1
p(-1) = (-1)4 + (-1)3 + (-1)2 + (-1) + 1
= 1 -1 + 1 -1 + 1
= 1
Remainder is not zero (0), so (x + 1) is not a factor of this polynomial.
(iii) x4 + 3x3 + 3x2 + x + 1
⇒ x + 1 = 0
⇒ x = -1
p(x) = x4 + 3x3 + 3x2 + x + 1
p(-1) = (-1)4 + 3 x (-1)3 + 3 x (-12) + (-1) + 1
= 1 -3 + 3 -1 + 1
= 1
Remainder is not zero (0), so (x + 1) is not a factor of this polynomial.
(iv) x3 - x2 - (2 + )x +
⇒ x + 1 = 0
⇒ x = -1
p(x) = x3 - x2 - (2 + )x +
p(-1) = (-1)3 - (-1)2 - (2 + )(-1) +
= -1 - 1 + 2 + +
= -2 + 2 + 2
= 2
Remainder is not zero (0), so (x + 1) is not a factor of this polynomial.
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
(i) p(x) = 2x3 + x2 - 2x - 1, g(x) = x + 1
(ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
(iii) p(x) = x3 - 4x2 + x + 6, g(x) = x - 3
Answer
(i) p(x) = 2x3 + x2 - 2x - 1
g(x) = x + 1
⇒ x + 1 = 0
⇒ x = -1
Putting x = -1 we get,
p(-1) = 2(-1)3 + (-1)2 - 2(-1) - 1
= -2 + 1 + 2 -1
= 0
Remainder is zero (0), so g(x) is factor of p(x).
(ii) p(x) = x3 + 3x2 + 3x + 1
g(x) = x + 2
⇒ x + 2 = 0
⇒ x = -2
Putting x = -2 we get,
p(-2) = (-2)3 + 3(-2)2 + 3(-2) + 1
= -8 + 3(4) - 6 + 1
= -8 + 12 - 6 + 1
= 13 - 14
= -1
Remainder is not zero (0), so g(x) is not a factor of p(x).
(iii) p(x) = x3 - 4x2 + x + 6
g(x) = x - 3
⇒ x - 3 = 0
⇒ x = 3
Putting x = -3 we get,
p(3) = (3)3 - 4(3)2 + 3 + 6
= 27 - 4(9) + 9
= 27 - 36 + 9
= 36 - 36
= 0
Remainder is zero (0), so g(x) is a factor of p(x).
Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:
(i) p(x) = x2 + x + k
(ii) p(x) = 2x2 + kx +
(iii) p(x) = kx2 - x + 1
(iv) p(x) = kx2 - 3x + k
Answer
(i) p(x) = x2 + x + k
⇒ x - 1 = 0
⇒ x = 1
Putting x = 1 we get,
p(1) = (1)2 + 1 + k
= 1 + 1 + k
⇒ 2 + k = 0
⇒ k = -2
So the value of k = -2
(ii) p(x) = 2x2 + kx +
⇒ x - 1 = 0
⇒ x = 1
Putting x = 1 we get,
p(1) = 2(1)2 + k(1) +
⇒ 2 + k +
⇒ k = -2 -
⇒ k = -(2 + )
So the value of k = -(2 + )
(iii) p(x) = kx2 - x + 1
⇒ x - 1 = 0
⇒ x = 1
Putting x = 1 we get,
p(1) = k(1)2 - (1) + 1
⇒ k - + 1 = 0
⇒ k = - 1
So the value of k = - 1
(iv) p(x) = kx2 - 3x + k
⇒ x - 1 = 0
⇒ x = 1
Putting x = 1 we get,
p(1) = k(1)2 -3(1) + k
= k - 3 + k
⇒ 2k - 3 = 0
⇒ 2k = 3
⇒ k =
So the value of k =
Factorise :
(i) 12x2 - 7x + 1
(ii) 2x2 + 7x + 3
(iii) 6x2 + 5x - 6
(iv) 3x2 - x - 4
Answer
(i) 12x2 - 7x + 1
= 12x2 - (4 + 3)x + 1
= 12x2 -4x -3x + 1
= 4x(3x - 1) -1(3x - 1)
= (3x - 1)(4x - 1)
Hence, 12x2 - 7x + 1 = (3x - 1)(4x - 1)
(ii) 2x2 + 7x + 3
= 2x2 + (6 + 1)x + 3
= 2x2 + 6x + x + 3
= 2x(x + 3) + 1(x + 3)
= (2x + 1)(x + 3)
Hence, 2x2 + 7x + 3 = (2x + 1)(x + 3)
(iii) 6x2 + 5x - 6
= 6x2 + (9 - 4)x - 6
= 6x2 +9x - 4x - 6
= 3x(2x + 3) -2(2x + 3)
= (2x + 3)(3x - 2)
Hence, 6x2 + 5x - 6 = (2x + 3)(3x - 2)
(iv) 3x2 - x - 4
= 3x2 - (4 - 3)x - 4
= 3x2 - 4x + 3x - 4
= x(3x - 4) + 1(3x - 4)
= (3x - 4)(x + 1)
Hence, 3x2 - x - 4 = (3x - 4)(x + 1)
Factorise :
(i) x3 - 2x2 - x + 2
(ii) x3 - 3x2 - 9x - 5
(iii) x3 + 13x2 + 32x + 20
(iv) 2y3 + y2 - 2y - 1
Answer
(i) x3 - 2x2 - x + 2
Let (x - a) is a factor, a = 1, -1, 2, -2.......
Putting a = 1
x - 1 = 0
x = 1
p(x) = x3 - 2x2 - x + 2
p(1) = (1)3 - 2 x (1)2 - 1 + 2
= 1 - 2 - 1 + 2
= 0
Hence, (x - 1) is the factor of x3 - 2x2 - x + 2
On dividing, x3 - 2x2 - x + 2 by (x - 1)
we get quotient = x2 - x - 2
Factorising x2 - x - 2,
= x2 - x - 2
= x2 -(2 - 1)x - 2
= x2 - 2x + x -2
= x( x - 2) + 1(x + 2)
= (x + 1)(x - 2)
∴ x2 - x - 2 = (x + 1)(x - 2)
∴ p(x) = x3 - 2x2 - x + 2 = (x - 1) (x + 1) (x - 2)
So, factors are (x - 1) (x + 1) (x - 2)
(ii) x3 - 3x2 - 9x - 5
Let (x - a) is a factor, a = 1, -1, 2, -2.......
Putting a = -1
x + 1 = 0
x = -1
p(x) = x3 - 3x2 - 9x - 5
p(-1) = (-1)3 - 3 x (-1)2 - 9 x (-1) - 5
= -1 - 3 + 9 - 5
= -9 + 9
= 0
Hence, (x + 1) is a factor of x3 - 3x2 - 9x - 5
On dividing, x3 - 3x2 - 9x - 5 by (x + 1)
We get quotient = x2 - 4x - 5
Factorising x2 - 4x - 5
x2 -(5 - 1)x - 5
x2 -5x + x - 5
x(x - 5) + 1(x - 5)
(x + 1) (x - 5)
∴ x2 - 4x - 5 = (x + 1) (x - 5)
∴ p(x) = x3 - 3x2 -9x - 5 = (x + 1) (x + 1) (x - 5)
So, factors are (x + 1) (x + 1) (x - 5)
(iii) x3 + 13x2 + 32x + 20
Let (x - a) is a factor, a = 1, -1, 2, -2.......
Putting a = -1
x + 1 = 0
x = -1
p(x) = x3 + 13x2 + 32x + 20
p(-1) = (-1)3 + 13 x (-1)2 + 32 x (-1) + 20
= -1 + 13 - 32 + 20
= -33 + 33
= 0
Hence, (x + 1) is a factor of x3 + 13x2 + 32x + 20
On dividing, x3 + 13x2 + 32x + 20 by (x + 1)
We get quotient = x2 + 12x + 20
Factorising x2 + 12x + 20
x2 + 10x + 2x + 20
x(x + 10) + 2(x + 10)
(x + 10)(x + 2)
∴ x2 + 12x + 20 = (x + 10)(x + 2)
∴ p(x) = x3 + 13x2 + 32x + 20 = (x + 1) (x + 10) (x + 2)
So, factors are (x + 1) (x + 10) (x + 2)
(iv) 2y3 + y2 - 2y - 1
Let (y - a) is a factor, a = 1, -1, 2, -2.......
Putting a = 1
y - 1 = 0
y = 1
p(y) = 2y3 + y2 - 2y - 1
p(1) = 2 x (1)3 + (1)2 - 2 x 1 - 1
= 2 + 1 - 2 - 1
= 0
Hence, (y - 1) is a factor of 2y3 + y2 - 2y - 1
On dividing, 2y3 + y2 - 2y - 1 by (y - 1)
We get quotient = 2y2 + 3y + 1
Factorising 2y2 + 3y + 1
2y2 + 2y + y +1
2y(y + 1) + 1(y + 1)
(y + 1)(2y + 1)
∴ 2y2 + 3y + 1 = (y + 1)(2y + 1)
∴ p(y) = 2y3 + y2 - 2y - 1 = (y - 1)(y + 1)(2y + 1)
So, factors are (y - 1)(y + 1)(2y + 1)
Use suitable identities to find the following products:
(i) (x + 4)(x + 10)
(ii) (x + 8)(x - 10)
(iii) (3x + 4)(3x - 5)
(iv) (y2 + ) (y2 - )
(v) (3 - 2x)(3 + 2x)
Answer
(i) (x + 4)(x + 10)
[∵ (x + a)(x + b) = x2 + (a + b)x + ab]
Putting a = 4, b = 10
= x2 + (4 + 10)x + 4 x 10
= x2 + 14x + 40
Hence, (x + 4)(x + 10) = x2 + 14x + 40
(ii) (x + 8)(x - 10)
[∵ (x + a)(x + b) = x2 + (a + b)x + ab]
Putting a = 8 , b = -10
= x2 + [8 + (-10)]x + 8 x (-10)
= x2 - 2x - 80
Hence, (x + 8)(x - 10) = x2 - 2x - 80
(iii) (3x + 4)(3x - 5)
[∵ (x + a)(x + b) = x2 + (a + b)x + ab]
Putting a = 4, b = -5, x = 3x
= (3x)2 + [4 + (-5)](3x) + (4)(-5)
= 9x2 + (-1)(3x) - 20
= 9x2 - 3x - 20
Hence, (3x + 4) (3x - 5) = 9x2 - 3x - 20
(iv) (y2 + )(y2 - )
[∵ (a + b)(a - b) = a2 - b2]
Putting a = y2, b =
= (y2)2 - ()2
= y4 -
Hence, (y2 + ) (y2 - ) = y4 -
(v) (3 - 2x)(3 + 2x)
[∵ (a - b)(a + b) = a2 - b2]
Putting a = 3, b = 2x
= (3)2 - (2x)2
= 9 - 4x2
Hence, (3 - 2x)(3 + 2x) = 9 - 4x2
Evaluate the following products without multiplying directly:
(i) 103 × 107
(ii) 95 × 96
(iii) 104 × 96
Answer
(i) 103 × 107
We can write it as,
= (100 + 3)(100 + 7)
[∵ (x + a)(x + b) = x2 + (a + b)x + ab]
Putting x = 100, a = 3, b = 7
= (100)2 + (3 + 7)(100) + (3)(7)
= 10000 + (10)(100) + 21
= 10000 + 1000 + 21
= 11021
Hence, 103 × 107 = 11021
(ii) 95 × 96
We can write it as,
[100 + (-5)][100 + (-4)]
[∵ (x + a)(x + b) = x2 + (a + b)x + ab]
Putting x = 100, a = -5 , b = -4
= (100)2 - [(-5) + (-4)](100) + (-5) x (-4)
= 10000 - (9)(100) + 20
= 10000 - 900 + 20
= 10020 - 900
= 9120
Hence, 95 × 96 = 9120
(iii) 104 × 96
We can write it as,
(100 + 4)(100 - 4)
[∵ (a + b)(a - b) = a2 - b2]
Putting a = 100, b = 4
= (100)2 - (4)2
= 10000 - 16
= 9984
Hence, 104 × 96 = 9984
Factorise the following using appropriate identities:
(i) 9x2 + 6xy + y2
(ii) 4y2 - 4y + 1
(iii)
Answer
(i) 9x2 + 6xy + y2
[∵ a2 + 2ab + b2 = (a + b)2]
= (3x)2 + 2(3x)(y) + (y)2
= (3x + y)2
Hence, 9x2 + 6xy + y2 = (3x + y)(3x + y)
(ii) 4y2 - 4y + 1
[∵ a2 - 2ab + b2 = (a - b)2]
= (2y)2 - 2(2y)(1) + (1)2
= (2y - 1)2
Hence, 4y2 - 4y + 1 = (2y - 1)(2y - 1)
(iii)
[∵ a2 - b2 = (a - b)(a + b)]
Hence, =
Expand each of the following, using suitable identities:
(i) (x + 2y + 4z)2
(ii) (2x - y + z)2
(iii) (-2x + 3y + 2z)2
(iv) (3a - 7b - c)2
(v) (-2x + 5y - 3z)2
(vi)
Answer
(i) (x + 2y + 4z)2
[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]
Putting x = x, y = 2y, z = 4z
= (x)2 + (2y)2 + (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8zx
(ii) (2x - y + z)2
[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]
Putting x = 2x, y = (-y), z = z
= (2x)2 + (-y)2 + (z)2 + 2(2x)(-y) + 2(-y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 - 4xy - 2yz + 4zx
(iii) (-2x + 3y + 2z)2
[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]
Putting x = -2x, y = 3y, z = 2z
= (-2x)2 + (3y)2 + (2z)2 + 2(-2x)(3y) + 2(3y)(2z) + 2(2z)(-2x)
= 4x2 + 9y2 + 4z2 - 12xy + 12yz - 8zx
(iv) (3a - 7b - c)2
[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]
Putting x = 3a, y = (-7b), z = (-c)
= (3a)2 + (-7b)2 + (-c)2 + 2(3a)(-7b) + 2(-7b)(-c) + 2(-c)(3a)
= 9a2 + 49b2 + c2 - 42ab + 14bc - 6ac
(v) (-2x + 5y - 3z)2
[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]
Putting x = -2x, y = 5y, z = (-3z)
= (-2x)2 + (5y)2 + (-3z)2 + 2(-2x)(5y) + 2(5y)(-3z) + 2(-3z)(-2x)
= 4x2 + 25y2 + 9z2 - 20xy - 30yz + 12zx
(vi)
[∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]
Putting x = , z = 1
Factorise:
(i) 4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz
(ii) 2x2 + y2 + 8z2 - xy + yz - 8xz
Answer
(i) 4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz
= (2x)2 + (3y)2 + (-4z)2 + 2(2x)(3y) + 2(3y)(-4z) + 2(-4z)(2x)
= (2x + 3y - 4z)2 [∵ (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]
Hence, 4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz = (2x + 3y - 4z)(2x + 3y - 4z)
(ii) 2x2 + y2 + 8z2 - xy + yz - 8xz
[∵ (a + b + c)2 = (a)2 + (b)2 + (c)2 + 2ab + 2bc + 2ca]
Hence, 2x2 + y2 + 8z2 -xy + yz - 8zx = (-x + y + z)(-x + y + z)
Write the following cubes in expanded form:
(i) (2x + 1)3
(ii) (2a - 3b)3
(iii)
(iv)
Answer
(i) (2x + 1)3
We know that:
(a + b)3= (a)3 + (b)3 + 3a2b + 3ab2
Putting a = 2x, b = 1
= (2x)3 + (1)3 + 3(2x)2(1) + 3(2x)(1)2
= 8x3 + 12x2 + 6x + 1
Hence, (2x + 1)3 = 8x3 + 12x2 + 6x + 1
(ii) (2a - 3b)3
We know that:
(a - b)3= (a)3 - (b)3 - 3a2b + 3ab2
Putting a = 2a, b = 3b
= (2a)3 - (3b)3 - 3(2a)2(3b) + 3(2a)(3b)2
= 8a3 - 27b3 - 3(4a2)(3b) + 3(2a)(9b2)
= 8a3 - 27b3 - 36a2b + 54ab2
Hence, (2a - 3b)3 = 8a3 - 27b3 - 36a2b + 54ab2
(iii)
We know that:
(a + b)3 = (a)3 + (b)3 + 3ab(a + b)
Putting a = , b = 1
Hence,
(iv)
We know that:
(a - b)3 = (a)3 - (b)3 - 3ab(a - b)
Putting a = x, b =
Hence,
Evaluate the following using suitable identities:
(i) (99)3
(ii) (102)3
(iii) (998)3
Answer
(i) (99)3
We can write it as,
= (100 - 1)3
We know that,
(a - b)3 = (a)3 - (b)3 - 3ab(a - b)
Putting a = 100 , b = 1
= (100)3 - (1)3 - 3 x 100 x 1(100 - 1)
= 1000000 - 1 - 300 x 99
= 1000000 - 1 - 29700
= 970299
Hence, (99)3 = 970299
(ii) (102)3
We can write it as,
= (100 + 2)3
We know that,
(a + b)3 = (a)3 + (b)3 + 3ab(a + b)
Putting a = 100 , b = 2
= (100)3 + (2)3 + 3 x 100 x 2(100 + 2)
= 1000000 + 8 + 600 x 102
= 1000000 + 8 + 61200
= 1061208
Hence, (102)3 = 1061208
(iii) (998)3
We can write it as,
= (1000 - 2)3
We know that,
(a - b)3 = (a)3 - (b)3 - 3ab(a - b)
Putting a = 1000 , b = 2
= (1000)3 - (2)3 - 3 x 1000 x 2(1000 - 2)
= 1000000000 - 8 - 6000 x 998
= 1000000000 - 8 - 5988000
= 994011992
Hence, (998)3 = 994011992
Factorise each of the following:
(i) 8a3 + b3 + 12a2b + 6ab2
(ii) 8a3 - b3 - 12a2b + 6ab2
(iii) 27 - 125a3 - 135a + 225a2
(iv) 64a3 - 27b3 - 144a2b + 108ab2
(v) 27p3 - - p2 + p
Answer
(i) 8a3 + b3 + 12a2b + 6ab2
[∵ a3 + b3 + 3a2b + 3ab2 = (a + b)3]
= (2a)3 + (b)3 + 3(2a)2(b) + 3(2a)(b)2
= (2a + b)3
Hence, 8a3 + b3 + 12a2b + 6ab2 = (2a + b)(2a + b)(2a + b)
(ii) 8a3 - b3 - 12a2b + 6ab2
[∵ a3 - b3 - 3a2b + 3ab2 = (a - b)3]
= (2a)3 - (b)3 - 3(2a)2(b) + 3(2a)(b)2
= (2a - b)3
Hence, 8a3 - b3 - 12a2b + 6ab2 = (2a - b)(2a - b)(2a - b)
(iii) 27 - 125a3 - 135a + 225a2
[∵ a3 - b3 - 3a2b + 3ab2 = (a - b)3]
= (3)3 - (5a)3 - 3(3)2(5a) + 3(3)(5a)2
= (3 - 5a)3
Hence, 27 - 125a3 - 135a + 225a2 = (3 - 5a)(3 - 5a)(3 - 5a)
(iv) 64a3 - 27b3 - 144a2b + 108ab2
[∵ a3 - b3 - 3a2b + 3ab2 = (a - b)3]
= (4a)3 - (3b)3 - 3(4a)2(3b) + 3(4a)(3b)2
= (4a - 3b)3
Hence, 64a3 - 27b3 - 144a2b + 108ab2 = (4a - 3b)(4a - 3b)(4a - 3b)
(v) 27p3 - - p2 + p
[∵ a3 - b3 - 3a2b + 3ab2 = (a - b)3]
= (3p)3 - 3 - 3(3p)2 + 3(3p)2
=
Hence, 27p3 - - p2 + p = \Big(3p - \dfrac{1}{6}\Big)
Verify :
(i) x3 + y3 = (x + y) (x2 - xy + y2)
(ii) x3 - y3 = (x - y) (x2 + xy + y2)
Answer
(i) x3 + y3 = (x + y) (x2 - xy + y2)
R.H.S
= (x + y) (x2 - xy + y2)
= (x)(x2 - xy + y2) + (y)(x2 - xy + y2)
= x3 - x2y + xy2 + yx2 - xy2 + y3
= x3 + y3
Hence, L.H.S = R.H.S
(ii) x3 - y3 = (x - y) (x2 + xy + y2)
R.H.S
= (x - y) (x2 + xy + y2)
= (x)(x2 + xy + y2) - (y)(x2 + xy + y2)
= x3 + x2y + xy2 - yx2 - xy2 - y3
= x3 - y3
Hence, L.H.S = R.H.S
Factorise each of the following:
(i) 27y3 + 125z3
(ii) 64m3 - 343n3
Answer
(i) 27y3 + 125z3
[∵ x3 + y3 = (x + y)(x2 - xy + y2)]
⇒ 27y3 + 125z3 = (3y)3 + (5z)3
Putting x = 3y, y = 5z
R.H.S = (x + y)(x2 - xy + y2)
= (3y + 5z)[(3y)2 - (3y)(5z) + (5z)2]
= (3y + 5z)(9y2 - 15yz + 25z2)
Hence, 27y3 + 125z3 = (3y + 5z)(9y2 - 15yz + 25z2)
(ii) 64m3 - 343n3
[∵ a3 - b3 = (a - b)(a2 + ab + b2)]
⇒ 64m3 - 343n3 = (4m)3 - (7n)3
Putting a = 4m, b = 7n
R.H.S = (a - b)(a2 + ab + b2)
= (4m - 7n)[(4m)2 + (4m)(7n) + (7n)2]
= (4m - 7n)(16m2 + 28mn + 49n2)
Hence, 64m3 - 343n3 = (4m - 7n)(16m2 + 28mn + 49n2)
Factorise : 27x3 + y3 + z3 - 9xyz
Answer
27x3 + y3 + z3 - 9xyz
[∵ x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)]
= (3x)3 + y3 + z3 - 3(3x)(y)(z)
= (3x + y + z)[(3x)2 + y2 + z2 - (3x)(y) - (y)(z) - (z)(3x)]
= (3x + y + z)(9x2 + y2 + z2 - 3xy - yz - 3zx)
Hence, 27x3 + y3 + z3 - 9xyz = (3x + y + z)(9x2 + y2 + z2 - 3xy - yz - 3zx)
Verify that x3 + y3 +z3 - 3xyz = (x + y + z)[(x - y)2 + (y - z)2 + (z - x)2]
Answer
R.H.S
= (x + y + z)[(x - y)2 + (y - z)2 + (z - x)2]
= (x + y + z)[(x2 + y2 - 2xy) + (y2 + z2 - 2yz) + (z2 + x2 - 2zx)] [∵ (a - b)2 = (a)2 + (b)2 - 2ab]
= (x + y + z)[2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx]
= (x + y + z) 2[x2 + y2 + z2 - xy - yz - zx]
= (x + y + z)[x2 + y2 + z2 - xy - yz - zx]
= x3 + y3 +z3 - 3xyz [∵ x3 + y3 +z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)]
Hence, L.H.S = R.H.S
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz
Answer
(x + y + z)3 = x3 + y3 + z3 - 3xyz
Given that x + y + z = 0
= (0)3 = x3 + y3 + z3 - 3xyz
⇒ 3xyz = x3 + y3 + z3
Hence proved
Without actually calculating the cubes, find the value of each of the following:
(i) (-12)3 + (7)3 + (5)3
(ii) (28)3 + (-15)3 + (-13)3
Answer
(i) (-12)3 + (7)3 + (5)3
Here,
-12 + 7 + 5 = 0
As, x + y + z = 0
So, x3 + y3 + z3 = 3xyz
= 3 x (-12) x 7 x 5
= -1260
Hence, (-12)3 + (7)3 + (5)3 = -1260
(ii) (28)3 + (-15)3 + (-13)3
Here,
= 28 + (-15) + (-13)
= 28 - 15 - 13
= 0
As, x + y + z = 0
So, x3 + y3 + z3 = 3xyz
= 3 x 28 x (-15) x (-13)
= 16380
Hence, (28)3 + (-15)3 + (-13)3 = 16380
Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(i) Area: 25a2 - 35a + 12
(ii) Area: 35y2 + 13y - 12
Answer
(i) 25a2 - 35a + 12
Area of Rectangle = Length x Breadth
= 25a2 - 35a + 12
= 25a2 -(20a + 15a) + 12
= 25a2 -20a -15a + 12
= 5a(5a - 4) - 3(5a - 4)
= (5a - 4)(5a - 3)
Hence, one possible answer is : Length = 5a - 3, Breadth = 5a - 4
(ii) 35y2 + 13y - 12
Area of Rectangle = Length x Breadth
= 35y2 + 13y - 12
= 35y2 +(28y - 15y) - 12
= 35y2 + 28y - 15y - 12
= 7y(5y + 4) - 3(5y + 4)
= (5y + 4)(7y - 3)
Hence, one possible answer is : Length = 7y - 3, Breadth = 5y + 4
What are the possible expressions for the dimensions of the cuboids whose volume are given below?
(i) Volume: 3x2 - 12x
(ii) Volume: 12ky2 + 8ky - 20k
Answer
(i) Volume: 3x2 - 12x
Volume of Cuboid = Length x Breadth X Height
= 3x2 - 12x
= 3x(x - 4)
= 3(x)(x - 4)
Hence, one possible answer is : 3, x and x - 4.
(ii) Volume: 12ky2 + 8ky - 20k
= 12ky2 + 8ky - 20k
= 4k(3y2 + 2y - 5)
= 4k(3y2 + 5y - 3y - 5)
= 4k[y(3y + 5) -1(3y + 5)]
= 4k (y - 1)(3y + 5)
Hence, one possible answer is : 4k, 3y + 5 and y - 1.